We report the Meissner effect studies on an Fe Se thin film grown on Nb-doped Sr Ti O3 substrate by molecular beam epitaxy. Two-coil mutual inductance measurement clearly demonstrates the onset of diamagnetic screenin...We report the Meissner effect studies on an Fe Se thin film grown on Nb-doped Sr Ti O3 substrate by molecular beam epitaxy. Two-coil mutual inductance measurement clearly demonstrates the onset of diamagnetic screening at 65 K, which is consistent with the gap opening temperature determined by previous angle-resolved photoemission spectroscopy results. The applied magnetic field causes a broadening of the superconducting transition near the onset temperature, which is the typical behavior for quasi-two-dimensional superconductors. Our results provide direct evidence that Fe Se thin film grown on Nb-doped Sr Ti O3 substrate has an onset TC* 65 K,which is the highest among all iron-based superconductors discovered so far.展开更多
基金supported by the National Natural Science Foundation and Ministry of Science and Technology of China(2015CB921000 and 2012CB921402)Yihua Wang is partially supported by the Urbanek Fellowship of the Department of Applied Physics at Stanford UniversityK.A.Moler is supported by the Department of Energy,Office of Science,Basic Energy Sciences,Materials Sciences and Engineering Division,under Contract DEAC02-76SF00515
文摘We report the Meissner effect studies on an Fe Se thin film grown on Nb-doped Sr Ti O3 substrate by molecular beam epitaxy. Two-coil mutual inductance measurement clearly demonstrates the onset of diamagnetic screening at 65 K, which is consistent with the gap opening temperature determined by previous angle-resolved photoemission spectroscopy results. The applied magnetic field causes a broadening of the superconducting transition near the onset temperature, which is the typical behavior for quasi-two-dimensional superconductors. Our results provide direct evidence that Fe Se thin film grown on Nb-doped Sr Ti O3 substrate has an onset TC* 65 K,which is the highest among all iron-based superconductors discovered so far.