Sequence variation of partial cytochrome b genes between two Coilia species, C. ectenes and C. mystus, was in- vestigated. Of the 402 nucleotides, twenty-seven (6.72%) are polymorphic and all are synonymous substituti...Sequence variation of partial cytochrome b genes between two Coilia species, C. ectenes and C. mystus, was in- vestigated. Of the 402 nucleotides, twenty-seven (6.72%) are polymorphic and all are synonymous substitutions. At the third positions of genetic condon of cytochrome b gene, the two species show an extreme anti-G bias (<4%) and a pronounced bias towards A and C (>68%). There is no amino acid sequence divergence between the partial cytochrome b genes of the two species, indicating a close genetic relationship between them. The k-2p genetic distance of partial cytochrome b segment of the two species is 0.072, suggesting that the species were separated 3.6 Ma ago, in the middle Pliocene. Our result reveals that the cytochrome b gene is an appropriate marker for studies of population genetic structures and phylogeographic pat- terns of the two species.展开更多
Anchovy (Engraulis aponicus), a small pelagic fish and food of other economic fishes, is a key species in the Yellow Sea ecosystem. Understanding the mechanisms of its recruitment and biomass variation is important ...Anchovy (Engraulis aponicus), a small pelagic fish and food of other economic fishes, is a key species in the Yellow Sea ecosystem. Understanding the mechanisms of its recruitment and biomass variation is important for the prediction and management of fishery resources. Coupled with a hydrodynamic model (POM) and a lower trophic level ecosystem model (NEMURO), an individual-based model of anchovy is developed to study the influence of physical environment on anchovy's biomass variation, Seasonal variations of circulation, water temperature and mix-layer depth from POM are used as external forcing for NEMURO and the anchovy model. Biomasses of large zooplankton and predatory zooplankton which anchovy feeds on are output from NEMURO and are controlled by the consumption of anchovy on them. Survival fitness theory related to temperature and food is used to determine the swimming action of anchovy in the model. The simulation results agree well with observations and elucidate the influence of temperature in over-wintering migration and food in feeding migration.展开更多
基金the Major State Basic Research Development Program(G19990437).
文摘Sequence variation of partial cytochrome b genes between two Coilia species, C. ectenes and C. mystus, was in- vestigated. Of the 402 nucleotides, twenty-seven (6.72%) are polymorphic and all are synonymous substitutions. At the third positions of genetic condon of cytochrome b gene, the two species show an extreme anti-G bias (<4%) and a pronounced bias towards A and C (>68%). There is no amino acid sequence divergence between the partial cytochrome b genes of the two species, indicating a close genetic relationship between them. The k-2p genetic distance of partial cytochrome b segment of the two species is 0.072, suggesting that the species were separated 3.6 Ma ago, in the middle Pliocene. Our result reveals that the cytochrome b gene is an appropriate marker for studies of population genetic structures and phylogeographic pat- terns of the two species.
基金supported by the National Natural Science Foundation of China (Grant No. 40830854)the National Basic Research Program of China (Grant No.2011CB403606)
文摘Anchovy (Engraulis aponicus), a small pelagic fish and food of other economic fishes, is a key species in the Yellow Sea ecosystem. Understanding the mechanisms of its recruitment and biomass variation is important for the prediction and management of fishery resources. Coupled with a hydrodynamic model (POM) and a lower trophic level ecosystem model (NEMURO), an individual-based model of anchovy is developed to study the influence of physical environment on anchovy's biomass variation, Seasonal variations of circulation, water temperature and mix-layer depth from POM are used as external forcing for NEMURO and the anchovy model. Biomasses of large zooplankton and predatory zooplankton which anchovy feeds on are output from NEMURO and are controlled by the consumption of anchovy on them. Survival fitness theory related to temperature and food is used to determine the swimming action of anchovy in the model. The simulation results agree well with observations and elucidate the influence of temperature in over-wintering migration and food in feeding migration.