针对大数据分析在大规模并行分布式系统和软件平台上可扩展的问题,提出了一个基于无参数围绕质心二进制分裂聚类(clustering using binary splitting,CLUBS)的大数据挖掘技术。该技术以完全无监督的方式工作,基于最小二次距离的准则进...针对大数据分析在大规模并行分布式系统和软件平台上可扩展的问题,提出了一个基于无参数围绕质心二进制分裂聚类(clustering using binary splitting,CLUBS)的大数据挖掘技术。该技术以完全无监督的方式工作,基于最小二次距离的准则进行分裂聚类将数据与噪声分离,通过中级精炼来识别仅包含异常值的块并为剩余块生成全面的簇,设计CLUBS的并行化版本以实现对大数据进行快速有效的聚类。实验表明CLUBS并行算法不受数据维度和噪声的影响,比现有算法具有更好的可扩展性且速度较快。展开更多
文摘针对大数据分析在大规模并行分布式系统和软件平台上可扩展的问题,提出了一个基于无参数围绕质心二进制分裂聚类(clustering using binary splitting,CLUBS)的大数据挖掘技术。该技术以完全无监督的方式工作,基于最小二次距离的准则进行分裂聚类将数据与噪声分离,通过中级精炼来识别仅包含异常值的块并为剩余块生成全面的簇,设计CLUBS的并行化版本以实现对大数据进行快速有效的聚类。实验表明CLUBS并行算法不受数据维度和噪声的影响,比现有算法具有更好的可扩展性且速度较快。