In order to further investigate how much fuel heat sink could be increased and how much power generation could be obtained by using recooling cycle for a regeneratively cooled scramjet,the energy conversion from heat ...In order to further investigate how much fuel heat sink could be increased and how much power generation could be obtained by using recooling cycle for a regeneratively cooled scramjet,the energy conversion from heat to electricity and the fuel heat sink increase in recooling cycle are experimentally investigated for fuel conversion rate and components of gas cracked fuel products at different fuel temperatures.The results indicate that the total fuel heat sink(i.e.,physical+chemical+recooling) of a recooling cycle is obviously higher than the heat sink of fuel itself,and the maximum heat sink increment is as high as 0.4 MJ/kg throughout the recooling cycle.Furthermore,the cracked fuel mixture has a significant capacity of doing work.The thermodynamic power generation scheme,which adopts the cracked fuel gas mixture as the working fluid,is a potential power generation cycle,and the maximum specific power generation is about 500 kW/kg.Turbine-pump scheme using cracked fuel gas mixture is also a potential fuel feeding cycle.展开更多
The applicability of cement grout (or cement-based grout) has been considered as an alternative to bentonite grout commonly used to backfill closed-loop vertical ground heat exchangers. In a geothermal heat pump sys...The applicability of cement grout (or cement-based grout) has been considered as an alternative to bentonite grout commonly used to backfill closed-loop vertical ground heat exchangers. In a geothermal heat pump system, repeated heating-cooling cycles may cause adverse effects on the integrity of cement grout in the ground heat exchanger. To account for the temperature cycling effect, the strength degradation of cement grout due to temperature cycling has been examined by measuring the unconfined compression strength of cured specimens in a humidity-temperature controlling chamber with applying temperature cycles between -5℃ and 50℃. There is a tendency that the unconfined compression strength decreases with an increase in the number of temperature cycles. On the other hand, an equivalent hydraulic conductivity of a pipe-embedded cement grout specimen was evaluated by carrying out a modified flexible wall permeameter test equipped with a water circulating system to control temperature inside the pipe section. The applied operating temperature range was from 5 to 35℃. After three cycles of heating-cooling circulation, the equivalent hydraulic conductivity becomes asymptotic to a constant value, which implies there is no severe detachment of the pipe from the cement grout.展开更多
基金supported by the Key Program of the National Natural Science Foundation of China (Grant No. 51076035)
文摘In order to further investigate how much fuel heat sink could be increased and how much power generation could be obtained by using recooling cycle for a regeneratively cooled scramjet,the energy conversion from heat to electricity and the fuel heat sink increase in recooling cycle are experimentally investigated for fuel conversion rate and components of gas cracked fuel products at different fuel temperatures.The results indicate that the total fuel heat sink(i.e.,physical+chemical+recooling) of a recooling cycle is obviously higher than the heat sink of fuel itself,and the maximum heat sink increment is as high as 0.4 MJ/kg throughout the recooling cycle.Furthermore,the cracked fuel mixture has a significant capacity of doing work.The thermodynamic power generation scheme,which adopts the cracked fuel gas mixture as the working fluid,is a potential power generation cycle,and the maximum specific power generation is about 500 kW/kg.Turbine-pump scheme using cracked fuel gas mixture is also a potential fuel feeding cycle.
基金supported by the Fundamental Research and Development Program of the Center of New and Renewable Energy of the Ministry of Knowledge and Economy (Grant No. 2008-N-GE08-R-01)the National Research Foundation of Korea Grant funded by the Korean Government (Grant No. 2010-0011159)
文摘The applicability of cement grout (or cement-based grout) has been considered as an alternative to bentonite grout commonly used to backfill closed-loop vertical ground heat exchangers. In a geothermal heat pump system, repeated heating-cooling cycles may cause adverse effects on the integrity of cement grout in the ground heat exchanger. To account for the temperature cycling effect, the strength degradation of cement grout due to temperature cycling has been examined by measuring the unconfined compression strength of cured specimens in a humidity-temperature controlling chamber with applying temperature cycles between -5℃ and 50℃. There is a tendency that the unconfined compression strength decreases with an increase in the number of temperature cycles. On the other hand, an equivalent hydraulic conductivity of a pipe-embedded cement grout specimen was evaluated by carrying out a modified flexible wall permeameter test equipped with a water circulating system to control temperature inside the pipe section. The applied operating temperature range was from 5 to 35℃. After three cycles of heating-cooling circulation, the equivalent hydraulic conductivity becomes asymptotic to a constant value, which implies there is no severe detachment of the pipe from the cement grout.