In order to get thermal flow field of direct air-cooled system,the hot water was supplied to the model of direct air-cooled condenser(ACC). The particle image velocimetery (PIV) experiments were carried out to get the...In order to get thermal flow field of direct air-cooled system,the hot water was supplied to the model of direct air-cooled condenser(ACC). The particle image velocimetery (PIV) experiments were carried out to get thermal flow field of a ACC under different conditions in low velocity wind tunnel,at the same time,the recirculation ratio at cooling tower was measured,so the relationship between flow field characteristics and recirculation ratio of cooling tower can be discussed. From the results we can see that the flow field configuration around cooling tower has great effects on average recirculation ratio under cooling tower. The eddy formed around cooling tower is a key reason that recirculation produces. The eddy intensity relates to velocity magnitude and direction angle,and the configuration of eddy lies on the geometry size of cooling tower. So changing the flow field configuration around cooling tower reasonably can decrease recirculation ratio under cooling tower,and heat dispel effect of ACC can also be improved.展开更多
The reactive distillation process for producing high purity monosilane via trichlorosilane redistribution reaction was simulated. Rigorous RadFrac block was employed in Aspen Plus simulation package. Accurate results ...The reactive distillation process for producing high purity monosilane via trichlorosilane redistribution reaction was simulated. Rigorous RadFrac block was employed in Aspen Plus simulation package. Accurate results could be given when the chemical kinetics was taken into account in the equilibrium stage model. A single column process was used for the verification of previous studies. The results showed that 99.9% purity monosilane could be achieved in the reactive distillation. A pumparound block was employed to reduce the condenser duty with inexpen-sive coolant. The effects of operating pressure, feed stage location, liquid holdup per stage and pumparound location were also investigated. The energy consumption was limited, but the refrigerant temperature was too low, which is the fatal disadvantage. Therefore, a double columns process was developed to increase the condenser tem-perature. The simulation results demonstrated that a reasonable temperature could be achieved by varying the recycle stream location.展开更多
文摘In order to get thermal flow field of direct air-cooled system,the hot water was supplied to the model of direct air-cooled condenser(ACC). The particle image velocimetery (PIV) experiments were carried out to get thermal flow field of a ACC under different conditions in low velocity wind tunnel,at the same time,the recirculation ratio at cooling tower was measured,so the relationship between flow field characteristics and recirculation ratio of cooling tower can be discussed. From the results we can see that the flow field configuration around cooling tower has great effects on average recirculation ratio under cooling tower. The eddy formed around cooling tower is a key reason that recirculation produces. The eddy intensity relates to velocity magnitude and direction angle,and the configuration of eddy lies on the geometry size of cooling tower. So changing the flow field configuration around cooling tower reasonably can decrease recirculation ratio under cooling tower,and heat dispel effect of ACC can also be improved.
文摘The reactive distillation process for producing high purity monosilane via trichlorosilane redistribution reaction was simulated. Rigorous RadFrac block was employed in Aspen Plus simulation package. Accurate results could be given when the chemical kinetics was taken into account in the equilibrium stage model. A single column process was used for the verification of previous studies. The results showed that 99.9% purity monosilane could be achieved in the reactive distillation. A pumparound block was employed to reduce the condenser duty with inexpen-sive coolant. The effects of operating pressure, feed stage location, liquid holdup per stage and pumparound location were also investigated. The energy consumption was limited, but the refrigerant temperature was too low, which is the fatal disadvantage. Therefore, a double columns process was developed to increase the condenser tem-perature. The simulation results demonstrated that a reasonable temperature could be achieved by varying the recycle stream location.