期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于EEMD的异常声音多类识别算法 被引量:7
1
作者 韦娟 岳凤丽 +1 位作者 仇鹏 宁方立 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2018年第7期117-121,共5页
为了提高异常声音信号的识别率,提出一种将总体平均经验模态分解和梅尔频率倒谱系数、短时能量及能量比相结合的特征提取改进算法,并对决策导向无环图支持向量机多类识别算法进行改进.首先对声音信号进行分帧,然后对每帧信号进行总体平... 为了提高异常声音信号的识别率,提出一种将总体平均经验模态分解和梅尔频率倒谱系数、短时能量及能量比相结合的特征提取改进算法,并对决策导向无环图支持向量机多类识别算法进行改进.首先对声音信号进行分帧,然后对每帧信号进行总体平均经验模态分解得到固有模态函数,最后对每层固有模态函数提取梅尔频率倒谱系数、短时能量和能量比特征.根据提取的特征,采用改进的决策导向无环图支持向量机算法对五种异常声音信号进行识别.仿真结果表明:改进的特征提取算法和决策导向无环图支持向量机多类识别算法相比改进前识的别率分别提高了2%和2.5%. 展开更多
关键词 特征提取 多类识别 总体平均经验模态分解 决策导向支持向量机 梅尔频率倒谱系数
原文传递
类间距节点优化DDAG-SVM算法在多故障诊断中的应用 被引量:2
2
作者 刘白林 陈国一 邹会云 《西安工业大学学报》 CAS 2014年第5期369-373,共5页
针对决策导向无环图支持向量机(DDAG-SVM)方法根节点的选择会影响分类结果的不同及影响故障诊断的准确性的问题,文中将DDAG-SVM多分类方法中的节点进行优化,得到了一种通过计算类间距确定分类树根节点的改进算法.实验结果表明:类间距节... 针对决策导向无环图支持向量机(DDAG-SVM)方法根节点的选择会影响分类结果的不同及影响故障诊断的准确性的问题,文中将DDAG-SVM多分类方法中的节点进行优化,得到了一种通过计算类间距确定分类树根节点的改进算法.实验结果表明:类间距节点优化的DDAG-SVM方法较传统DDAG-SVM分类方法准确率提高了4%,且分类效率提高了26.1%. 展开更多
关键词 多故障诊断 核主成分分析 决策导向支持向量机 节点优化
下载PDF
基于EMD近似熵和DAGSVM的机械故障诊断 被引量:7
3
作者 戴桂平 《计量学报》 CSCD 北大核心 2010年第5期467-471,共5页
故障特征提取的精确性和分类识别的高效率是提高故障诊断准确率和速度的关键。针对此问题,提出一种基于经验模式分解近似熵和决策导向循环图支持向量机的机械故障诊断新方法。首先,对故障振动信号进行经验模式分解,得到若干个反映故... 故障特征提取的精确性和分类识别的高效率是提高故障诊断准确率和速度的关键。针对此问题,提出一种基于经验模式分解近似熵和决策导向循环图支持向量机的机械故障诊断新方法。首先,对故障振动信号进行经验模式分解,得到若干个反映故障信息的本征模函数;其次,选取前4个本征模函数的近似熵值作为信号的特征向量;最后,将构造的特征向量输入到决策导向循环图支持向量机分类器进行故障类型识别。仿真表明,该方法能有效地提取故障特征,与“一对一”支持向量机及传统的BP网络相比,具有训练样本少、训练速度快、识别精度高等优点。 展开更多
关键词 计量学 故障诊断 经验模式分解 近似熵 决策导向支持向量机
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部