Background and aims: Diverticulosis is a common disease of not completely defined pathogenesis. Motor abnormalities of the intestinal wall have been frequently described but very little is known about their mechanisms...Background and aims: Diverticulosis is a common disease of not completely defined pathogenesis. Motor abnormalities of the intestinal wall have been frequently described but very little is known about their mechanisms. We investigated in vitro the neural response of colonic longitudinal muscle strips from patients undergoing surgery for complicated diverticular disease (diverticulitis). Methods: The neural contractile response to electrical field stimulation of longitudinal muscle strips from the colon of patients undergoing surgery for colonic cancer or diverticulitis was challenged by different receptor agonists and antagonists. Results: Contractions of colonic strips from healthy controls and diverticulitis specimens were abolished by atropine. The βadrenergic agonist (-) isoprenaline and the tachykinin NK1 receptor antagonist SR140333 had similar potency in reducing the electrical twitch response in controls and diseased tissues, while the cannabinoid receptor agonist (+)WIN 55,212-2 was 100 times more potent in inhibiting contractions in controls (IC50 42 nmol/l) than in diverticulitis strips. SR141716, a selective antagonist of the cannabinoid CB1 receptor, had no intrinsic activity in control preparations but potentiated the neural twitch in diseased tissues by up to 196%in a concentration dependent manner. SR141716 inhibited (+)WIN 55,212-2 induced relaxation in control strips but had no efficacy on (+)WIN 55,212-2 responses in strips from diverticular disease patients. Colonic levels of the endogenous ligand of cannabinoid and vanilloid TRPV1 receptors anandamide were more than twice those of control tissues (54 v 127 pmol/g tissue). The axonal conduction blocker tetrodotoxin had opposite effects in the two preparations, completely inhibiting the contractions of control strips but potentiating those in diverticular preparations, an effect selectively inhibited by SR140333. Conclusions: Neural control of colon motility is profoundly altered in patients with diverticulitis. Their raised levels of anandami展开更多
文摘Background and aims: Diverticulosis is a common disease of not completely defined pathogenesis. Motor abnormalities of the intestinal wall have been frequently described but very little is known about their mechanisms. We investigated in vitro the neural response of colonic longitudinal muscle strips from patients undergoing surgery for complicated diverticular disease (diverticulitis). Methods: The neural contractile response to electrical field stimulation of longitudinal muscle strips from the colon of patients undergoing surgery for colonic cancer or diverticulitis was challenged by different receptor agonists and antagonists. Results: Contractions of colonic strips from healthy controls and diverticulitis specimens were abolished by atropine. The βadrenergic agonist (-) isoprenaline and the tachykinin NK1 receptor antagonist SR140333 had similar potency in reducing the electrical twitch response in controls and diseased tissues, while the cannabinoid receptor agonist (+)WIN 55,212-2 was 100 times more potent in inhibiting contractions in controls (IC50 42 nmol/l) than in diverticulitis strips. SR141716, a selective antagonist of the cannabinoid CB1 receptor, had no intrinsic activity in control preparations but potentiated the neural twitch in diseased tissues by up to 196%in a concentration dependent manner. SR141716 inhibited (+)WIN 55,212-2 induced relaxation in control strips but had no efficacy on (+)WIN 55,212-2 responses in strips from diverticular disease patients. Colonic levels of the endogenous ligand of cannabinoid and vanilloid TRPV1 receptors anandamide were more than twice those of control tissues (54 v 127 pmol/g tissue). The axonal conduction blocker tetrodotoxin had opposite effects in the two preparations, completely inhibiting the contractions of control strips but potentiating those in diverticular preparations, an effect selectively inhibited by SR140333. Conclusions: Neural control of colon motility is profoundly altered in patients with diverticulitis. Their raised levels of anandami