压电陶瓷驱动电源是压电陶瓷微位移器应用中关键部件。PA 85是一种高压、高精度的M O SFET运算放大器。文章介绍了一种基于PA 85的新型压电陶瓷驱动电源,详细介绍了电源复合放大电路部分的设计原理和并对其稳定性进行了分析。该电源具...压电陶瓷驱动电源是压电陶瓷微位移器应用中关键部件。PA 85是一种高压、高精度的M O SFET运算放大器。文章介绍了一种基于PA 85的新型压电陶瓷驱动电源,详细介绍了电源复合放大电路部分的设计原理和并对其稳定性进行了分析。该电源具有精度高,驱动能力强,结构简单,稳定性好的特点。展开更多
A class of one-way isothermal mass transfer processes with Fick’s diffusive mass transfer law[g ∝Δ(c)]is investigated in this paper.Based on the definition of the mass entransy,the entransy dissipation function whi...A class of one-way isothermal mass transfer processes with Fick’s diffusive mass transfer law[g ∝Δ(c)]is investigated in this paper.Based on the definition of the mass entransy,the entransy dissipation function which reflects the irreversibility of mass transfer ability loss is derived.The optimal concentration allocations of the key components corresponding to the highand low-concentration sides for the minimum entransy dissipation of the mass transfer process are obtained by applying opti- mal control theory and compared with the strategies of the minimum entropy generation,constant mass transfer flux(constant concentration difference),and constant concentration ratio(constant chemical potential difference).The results are as follows. For the optimal mass transfer strategy of the minimum entransy dissipation,the product of the square of the key component concentration difference between the high-and the low-concentration sides and the inert component concentration at the low-concentration side is a constant,while for that of the minimum entropy generation,the ratio of the square of the key com-ponent concentration difference between the high-and the low-concentration sides to the key component concentration at the low-concentration side is a constant;when the mass transfer process is not involved in energy conversion process,the optimi-zation principle should be the minimum entransy dissipation;the mass transfer strategy of constant concentration difference is superior to that of constant concentration ratio.The results obtained in this paper can provide some theoretical guidelines for optimal designs and operations of practical mass transfer processes.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.10905093)the Program for New Century Excellent Talents in University of China(Grant No.NCET-04-1006)the Foun-dation for the Author of National Excellent Doctoral Dissertation of China(Grant No.200136)
文摘A class of one-way isothermal mass transfer processes with Fick’s diffusive mass transfer law[g ∝Δ(c)]is investigated in this paper.Based on the definition of the mass entransy,the entransy dissipation function which reflects the irreversibility of mass transfer ability loss is derived.The optimal concentration allocations of the key components corresponding to the highand low-concentration sides for the minimum entransy dissipation of the mass transfer process are obtained by applying opti- mal control theory and compared with the strategies of the minimum entropy generation,constant mass transfer flux(constant concentration difference),and constant concentration ratio(constant chemical potential difference).The results are as follows. For the optimal mass transfer strategy of the minimum entransy dissipation,the product of the square of the key component concentration difference between the high-and the low-concentration sides and the inert component concentration at the low-concentration side is a constant,while for that of the minimum entropy generation,the ratio of the square of the key com-ponent concentration difference between the high-and the low-concentration sides to the key component concentration at the low-concentration side is a constant;when the mass transfer process is not involved in energy conversion process,the optimi-zation principle should be the minimum entransy dissipation;the mass transfer strategy of constant concentration difference is superior to that of constant concentration ratio.The results obtained in this paper can provide some theoretical guidelines for optimal designs and operations of practical mass transfer processes.