期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于共享邻近度和概率分配的密度峰值聚类算法
1
作者
朱鸿祥
吴根秀
王兆辉
《计算机工程与应用》
CSCD
北大核心
2024年第12期74-90,共17页
针对密度峰值聚类(DPC)算法难以准确找到流形数据的类簇中心以及剩余样本点分配过程易发生连带错误等问题,提出了一种基于共享邻近度和概率分配的密度峰值聚类(SP-DPC)算法。基于K近邻和共享K近邻定义了样本点间的共享邻近度,使用共享...
针对密度峰值聚类(DPC)算法难以准确找到流形数据的类簇中心以及剩余样本点分配过程易发生连带错误等问题,提出了一种基于共享邻近度和概率分配的密度峰值聚类(SP-DPC)算法。基于K近邻和共享K近邻定义了样本点间的共享邻近度,使用共享邻近度重新定义了样本点的局部密度,从而找到正确的类簇中心;利用样本点的K近邻信息,提出传递概率分配策略和证据概率分配策略共同优化剩余样本点的分配,从而避免分配连带错误;在17个合成数据集和12个UCI数据集上进行实验,将SP-DPC算法与DPC算法、SKM-DPC算法、DPC-NN算法、DBSCAN算法、K-means算法进行对比,实验结果表明SP-DPC算法在AMI、ARI、FMI这3个评价指标上整体取得了相对最优值,聚类效果优于其他对比算法。
展开更多
关键词
密
度
峰值聚类
K近邻
共享
邻近
度
概率分配
证据理论
下载PDF
职称材料
题名
基于共享邻近度和概率分配的密度峰值聚类算法
1
作者
朱鸿祥
吴根秀
王兆辉
机构
江西师范大学数学与统计学院
出处
《计算机工程与应用》
CSCD
北大核心
2024年第12期74-90,共17页
基金
国家自然科学基金(62266023)。
文摘
针对密度峰值聚类(DPC)算法难以准确找到流形数据的类簇中心以及剩余样本点分配过程易发生连带错误等问题,提出了一种基于共享邻近度和概率分配的密度峰值聚类(SP-DPC)算法。基于K近邻和共享K近邻定义了样本点间的共享邻近度,使用共享邻近度重新定义了样本点的局部密度,从而找到正确的类簇中心;利用样本点的K近邻信息,提出传递概率分配策略和证据概率分配策略共同优化剩余样本点的分配,从而避免分配连带错误;在17个合成数据集和12个UCI数据集上进行实验,将SP-DPC算法与DPC算法、SKM-DPC算法、DPC-NN算法、DBSCAN算法、K-means算法进行对比,实验结果表明SP-DPC算法在AMI、ARI、FMI这3个评价指标上整体取得了相对最优值,聚类效果优于其他对比算法。
关键词
密
度
峰值聚类
K近邻
共享
邻近
度
概率分配
证据理论
Keywords
density peaks clustering
K nearest neighbor
shared neighbor degree
probability assignment
evidence theory
分类号
TP301.6 [自动化与计算机技术—计算机系统结构]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于共享邻近度和概率分配的密度峰值聚类算法
朱鸿祥
吴根秀
王兆辉
《计算机工程与应用》
CSCD
北大核心
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部