在计算机仿真领域,运用重新组合等相关技术,可以对已经捕捉的人体运动数据实现重用,以较低的成本产生新的运动。但是,由于运动库的数据庞大,对其实施有效检索成为一个重要问题。以倒排表数据结构为基础,设计出一套针对人体运动的检索算...在计算机仿真领域,运用重新组合等相关技术,可以对已经捕捉的人体运动数据实现重用,以较低的成本产生新的运动。但是,由于运动库的数据庞大,对其实施有效检索成为一个重要问题。以倒排表数据结构为基础,设计出一套针对人体运动的检索算法。不同于传统的最长公共子序列(Longest Common Subsequence,LCSS)的度量算法,提出了一种限制最小匹配率ρmin的有限最长公共子序列(Limited-LCSS)算法,并在此基础上针对倒排表的数据结构特点对算法进行了优化,显著的提高了算法的效率。实验表明提出的检索方法具有较好的速度和准确性。展开更多
为了提高运动目标轨迹分类的准确性,该文综合考虑了轨迹的位置信息和方向信息,提出了一种结合Hausdorff距离和最长公共子序列(Longest Common SubSequence,LCSS)的轨迹分类算法。该算法首先采用改进的Hausdorff距离对轨迹的位置信息进...为了提高运动目标轨迹分类的准确性,该文综合考虑了轨迹的位置信息和方向信息,提出了一种结合Hausdorff距离和最长公共子序列(Longest Common SubSequence,LCSS)的轨迹分类算法。该算法首先采用改进的Hausdorff距离对轨迹的位置信息进行相似性测量,然后采用改进的LCSS算法对轨迹的方向信息进行相似性测量。与其他轨迹聚类算法不同,该算法融合了Hausdorff距离和LCSS两种算法的优点,提高了轨迹分类的准确性。此外,为了进一步降低计算复杂度,该文还实现了一种基于插值的保距变换算法和一种LCSS快速算法。实验结果表明,该轨迹分类算法可以明显提高轨迹的聚类准确率,聚类准确率可达到96%;基于插值的保距变换算法和LCSS快速算法可以很大程度上降低算法的计算复杂度,下降幅度最大可达到80%。该方法可以同时满足轨迹分类对精确度、实时性和鲁棒性的要求。展开更多
序列是一种重要的数据类型,在诸多应用领域广泛存在.基于序列的特征选择具有广阔的现实应用场景.交互特征是指一组整体具有显著强于单独个体与目标相关性的特征集合.从大规模序列中挖掘交互特征面临着位点的"组合爆炸"问题,...序列是一种重要的数据类型,在诸多应用领域广泛存在.基于序列的特征选择具有广阔的现实应用场景.交互特征是指一组整体具有显著强于单独个体与目标相关性的特征集合.从大规模序列中挖掘交互特征面临着位点的"组合爆炸"问题,计算挑战性极大.针对该问题,以生物领域高通量测序数据为背景,提出了一种新的基于并行处理和演化计算的高阶交互特征挖掘算法.位点数是制约交互作用挖掘效率的根本因素.摈弃了现有方法基于序列分块的并行策略,采用基于位点分块的并行思想,具有天然的效率优势.进一步,提出了极大等位公共子序列(maximal allelic common subsequence, MACS)的概念并设计了基于MACS的特征区域划分策略.该策略能将交互特征的查找范围缩小至许多"碎片"空间,并保证不同"碎片"间不存在交互特征,避免计算耦合引起的高额通信代价.利用基于置换搜索的并行蚁群算法,执行交互特征选择.大量真实数据集和合成数据集上的实验结果,证实提出的PACOIFS算法在有效性和效率上优于同类其他算法.展开更多
文摘在计算机仿真领域,运用重新组合等相关技术,可以对已经捕捉的人体运动数据实现重用,以较低的成本产生新的运动。但是,由于运动库的数据庞大,对其实施有效检索成为一个重要问题。以倒排表数据结构为基础,设计出一套针对人体运动的检索算法。不同于传统的最长公共子序列(Longest Common Subsequence,LCSS)的度量算法,提出了一种限制最小匹配率ρmin的有限最长公共子序列(Limited-LCSS)算法,并在此基础上针对倒排表的数据结构特点对算法进行了优化,显著的提高了算法的效率。实验表明提出的检索方法具有较好的速度和准确性。
文摘为了提高运动目标轨迹分类的准确性,该文综合考虑了轨迹的位置信息和方向信息,提出了一种结合Hausdorff距离和最长公共子序列(Longest Common SubSequence,LCSS)的轨迹分类算法。该算法首先采用改进的Hausdorff距离对轨迹的位置信息进行相似性测量,然后采用改进的LCSS算法对轨迹的方向信息进行相似性测量。与其他轨迹聚类算法不同,该算法融合了Hausdorff距离和LCSS两种算法的优点,提高了轨迹分类的准确性。此外,为了进一步降低计算复杂度,该文还实现了一种基于插值的保距变换算法和一种LCSS快速算法。实验结果表明,该轨迹分类算法可以明显提高轨迹的聚类准确率,聚类准确率可达到96%;基于插值的保距变换算法和LCSS快速算法可以很大程度上降低算法的计算复杂度,下降幅度最大可达到80%。该方法可以同时满足轨迹分类对精确度、实时性和鲁棒性的要求。
文摘序列是一种重要的数据类型,在诸多应用领域广泛存在.基于序列的特征选择具有广阔的现实应用场景.交互特征是指一组整体具有显著强于单独个体与目标相关性的特征集合.从大规模序列中挖掘交互特征面临着位点的"组合爆炸"问题,计算挑战性极大.针对该问题,以生物领域高通量测序数据为背景,提出了一种新的基于并行处理和演化计算的高阶交互特征挖掘算法.位点数是制约交互作用挖掘效率的根本因素.摈弃了现有方法基于序列分块的并行策略,采用基于位点分块的并行思想,具有天然的效率优势.进一步,提出了极大等位公共子序列(maximal allelic common subsequence, MACS)的概念并设计了基于MACS的特征区域划分策略.该策略能将交互特征的查找范围缩小至许多"碎片"空间,并保证不同"碎片"间不存在交互特征,避免计算耦合引起的高额通信代价.利用基于置换搜索的并行蚁群算法,执行交互特征选择.大量真实数据集和合成数据集上的实验结果,证实提出的PACOIFS算法在有效性和效率上优于同类其他算法.