期刊文献+
共找到476篇文章
< 1 2 24 >
每页显示 20 50 100
基于时间序列分解与全连接神经网络的警情长周期时间序列预测 被引量:7
1
作者 石少冲 陈鹏 +1 位作者 曾昭龙 胡校成 《科学技术与工程》 北大核心 2020年第13期5186-5191,共6页
传统的警情时间序列预测以实际的发案数量为目标,且仅能实现短期的预测,但由于警情时间序列本身固有的强随机性使预测很难达到理想的效果。根据警情时间序列数据的特点,从公安工作的实际需求出发,提出了一种基于时间序列分解与全连接神... 传统的警情时间序列预测以实际的发案数量为目标,且仅能实现短期的预测,但由于警情时间序列本身固有的强随机性使预测很难达到理想的效果。根据警情时间序列数据的特点,从公安工作的实际需求出发,提出了一种基于时间序列分解与全连接神经网络的(STL-FNN)预测模型,该模型以预测警情的单日发案的风险等级为主要目标,能够实现警情风险等级的长周期预测。利用该模型对B市侵财类警情数据进行了时间序列长周期预测的实证分析,结果表明:STL-FNN模型能够实现一年的警情单日发案风险的预测,平均准确率为0.6247,预测性能优于Holt-Winters、LSTM、Prophet和ARIMA等模型。 展开更多
关键词 警情预测 时间序列 神经网络 准确率
下载PDF
基于神经网络的高校贫困生辅助认定模型研究 被引量:1
2
作者 曾文玄 高启文 陈新超 《无线电工程》 北大核心 2023年第11期2596-2606,共11页
“精准资助”是现阶段我国贫困生资助等教育扶贫工作的新任务,贫困生认定工作作为贫困生资助的首要环节,现行的传统流程中存在着“假贫困”、认定标准主观性强等问题。将数据挖掘应用于贫困生辅助认定,基于学生消费行为习惯、学习情况... “精准资助”是现阶段我国贫困生资助等教育扶贫工作的新任务,贫困生认定工作作为贫困生资助的首要环节,现行的传统流程中存在着“假贫困”、认定标准主观性强等问题。将数据挖掘应用于贫困生辅助认定,基于学生消费行为习惯、学习情况和家庭情况等相关数据,对智慧校园长期积累的数据产物进行数据采样和建模,形成贫困生特征样本数据集,利用TensorFlow对全连接神经网络进行模型训练,根据模型产生期望输出,得到贫困生辅助认定模型。随机抽取输出的测试集数据对比已有贫困生数据进行精度测试,测试准确率较高。整个模型训练过程包括数据采样、数据建模、模型训练和模型评价等过程,将其应用于贫困生辅助认定,为传统主观的贫困生认定提供了更为精准、科学、客观的决策支撑。 展开更多
关键词 精准资助 神经网络 贫困生认定
下载PDF
基于全神经网络增强算法的WSNs故障预警与检测
3
作者 兰娅勋 蔡娟 李振坤 《计算机测量与控制》 2023年第11期81-87,共7页
针对现有WSNs故障检测算法存在的故障分类检测率低、耗时长、节点能耗控制差等问题,提出一种全神经网络增强故障预警与检测算法;全神经网络的神经元节点与临近层的节点连接,形成具有强大故障数据训练功能的深度网络结构,选择平滑性更好... 针对现有WSNs故障检测算法存在的故障分类检测率低、耗时长、节点能耗控制差等问题,提出一种全神经网络增强故障预警与检测算法;全神经网络的神经元节点与临近层的节点连接,形成具有强大故障数据训练功能的深度网络结构,选择平滑性更好的sigmoid函数作为模型的激活函数,并基于感知机合理调节相邻两个隐含层之间的阈值权重,降低模型的训练损失;采用Adam优化算法抑制模型的梯度膨胀和梯度消失等异常情况,并消除训练中产生的数据冗余,以降低故障数据训练中产生的虚预警;实验结果显示:提出算法的总体故障检测率和不同类型故障的分类检测率都优于传统算法,此外全神经网络增强算法在节点故障检测耗时和能耗控制方面,也具有显著优势。 展开更多
关键词 神经网络 WSNS 节点 SIGMOID函数 Adam优化算法 梯度
下载PDF
基于循环神经网络的测井曲线生成方法 被引量:91
4
作者 张东晓 陈云天 孟晋 《石油勘探与开发》 SCIE EI CAS CSCD 北大核心 2018年第4期598-607,共10页
为了在不增加经济成本的基础上补充缺失的测井信息,提出利用机器学习方法根据已有的部分测井曲线生成人工测井曲线,并进行了实验验证和应用效果分析。考虑到传统全连接神经网络(FCNN)无法描述数据的空间相关性,基于一种循环神经网络(RNN... 为了在不增加经济成本的基础上补充缺失的测井信息,提出利用机器学习方法根据已有的部分测井曲线生成人工测井曲线,并进行了实验验证和应用效果分析。考虑到传统全连接神经网络(FCNN)无法描述数据的空间相关性,基于一种循环神经网络(RNN)即长短期记忆神经网络(LSTM)来构建测井曲线生成方法。该方法生成的曲线不仅考虑了不同测井曲线的内在联系,同时兼顾了测井信息随深度的变化趋势和前后关联。将标准LSTM与串级系统相结合,提出了一种串级长短期记忆神经网络(CLSTM)。采用真实测井数据进行实验,LSTM明显优于传统FCNN,生成的测井数据精度更高;CLSTM更适用于测井曲线生成这种多序列数据问题;提出的基于机器学习的人工测井曲线生成方法更准确经济。 展开更多
关键词 测井曲线 生成方法 机器学习 连接神经网络 循环神经网络 长短期记忆神经网络 人工智能
下载PDF
全卷积神经网络图像语义分割方法综述 被引量:52
5
作者 张鑫 姚庆安 +2 位作者 赵健 金镇君 冯云丛 《计算机工程与应用》 CSCD 北大核心 2022年第8期45-57,共13页
图像语义分割是计算机视觉领域的热点研究课题,随着全卷积神经网络的迅速兴起,图像语义分割和全卷积神经网络的融合发展取得了非常卓越的成绩。通过对近年来高质量文献的收集,重点对全卷积神经网络图像语义分割方法进行总结。将收集的文... 图像语义分割是计算机视觉领域的热点研究课题,随着全卷积神经网络的迅速兴起,图像语义分割和全卷积神经网络的融合发展取得了非常卓越的成绩。通过对近年来高质量文献的收集,重点对全卷积神经网络图像语义分割方法进行总结。将收集的文献,按照应用场景的不同,划分为经典语义分割、实时性语义分割和RGBD语义分割,对具有代表性的分割方法进行阐述。同时归纳了常用的公共数据集和性能的评价指标,并对常用数据集上的实验进行分析总结,对全卷积神经网络未来可能的研究方向进行展望。 展开更多
关键词 图像语义分割 计算机视觉 卷积神经网络
下载PDF
基于全卷积神经网络的多尺度视网膜血管分割 被引量:48
6
作者 郑婷月 唐晨 雷振坤 《光学学报》 EI CAS CSCD 北大核心 2019年第2期119-126,共8页
提出了一种基于多尺度特征融合的全卷积神经网络的视网膜血管分割方法,无需手工设计特征和后处理过程。利用跳跃连接构建编码器-解码器结构全卷积神经网络,将高层语义信息和低层特征信息进行融合;利用残差块进一步学习细节和纹理特征;... 提出了一种基于多尺度特征融合的全卷积神经网络的视网膜血管分割方法,无需手工设计特征和后处理过程。利用跳跃连接构建编码器-解码器结构全卷积神经网络,将高层语义信息和低层特征信息进行融合;利用残差块进一步学习细节和纹理特征;利用不同空洞率的空洞卷积构建多尺度空间金字塔池化结构,进一步扩大感受野,充分结合图像上下文信息;采用类别平衡损失函数解决正负样本不均衡问题。实验结果表明,在DRIVE(Digital Retinal Images for Vessel Extraction)和STARE (Structured Analysis of the Retina)数据集上的准确率分别为95.46%和96.84%,敏感性分别为80.53%和82.99%,特异性分别为97.67%和97.94%,受试者工作特征(ROC)曲线下的面积分别为97.71%和98.17%。所提方法相较于其他方法性能更优。 展开更多
关键词 图像处理 图像识别 视网膜血管 卷积神经网络 多尺度分割 监督学习
原文传递
全卷积神经网络研究综述 被引量:44
7
作者 章琳 袁非牛 +1 位作者 张文睿 曾夏玲 《计算机工程与应用》 CSCD 北大核心 2020年第1期25-37,共13页
近年来,全卷积神经网络发展迅猛,在多个视觉研究领域表现出了非常亮眼的成绩。重点收集了近几年的高质量文献,对其中提出的全卷积方法进行分析总结,力求让读者通过对研读,对全卷积神经网络的关键技术、研究现状和最新进展有一个比较全... 近年来,全卷积神经网络发展迅猛,在多个视觉研究领域表现出了非常亮眼的成绩。重点收集了近几年的高质量文献,对其中提出的全卷积方法进行分析总结,力求让读者通过对研读,对全卷积神经网络的关键技术、研究现状和最新进展有一个比较全面的了解。将收集到的文献,按照研究领域的不同进行分类汇总,重点提取几个研究非常活跃的领域,详细介绍一些非常具有代表性的算法,并重点介绍了各种方法的精髓所在,同时还对近一年来的最新研究进展进行了概述。通过对大量文献的梳理研究,总结出全卷积神经网络在近几年取得的成就,分析各种方法的优缺点,根据全卷积神经网络目前还存在的一些问题,归纳出未来可能的发展方向。 展开更多
关键词 卷积神经网络 卷积计算 深度学习 视觉研究
下载PDF
基于深度全卷积神经网络的大田稻穗分割 被引量:41
8
作者 段凌凤 熊雄 +2 位作者 刘谦 杨万能 黄成龙 《农业工程学报》 EI CAS CSCD 北大核心 2018年第12期202-209,共8页
稻穗的准确分割是获取水稻穗部性状、实现水稻表型自动化测量的关键。该研究应用水稻图像数据集及数据增广技术,离线训练了用于稻穗分割的3个分别基于Seg Net,Deep LAB和PSPNet的全卷积神经网络。综合考虑分割性能和计算速度,优选了基于... 稻穗的准确分割是获取水稻穗部性状、实现水稻表型自动化测量的关键。该研究应用水稻图像数据集及数据增广技术,离线训练了用于稻穗分割的3个分别基于Seg Net,Deep LAB和PSPNet的全卷积神经网络。综合考虑分割性能和计算速度,优选了基于Seg Net的网络,称为Panicle Net。在线分割阶段先将原始图像划分为子图,由Panicle Net分割子图,再拼接子图得到分割结果。比较该算法及现有作物果穗分割算法Panicle-SEG、HSeg、i2滞后阈值法及joint Seg,该算法对与训练样本同年度拍摄样本Qseg值0.76、F值0.86,不同年度样本Qseg值0.67、F值0.80,远优于次优的Panicle-SEG算法,且计算速度约为Panicle-SEG算法的35倍。该算法能克服稻穗边缘严重不规则、不同品种及生育期稻穗外观差异大、穂叶颜色混叠和复杂大田环境中光照、遮挡等因素的干扰,提升稻穗分割准确度及效率,进而服务于水稻育种栽培。 展开更多
关键词 作物 图像分割 大田水稻 稻穗分割 深度学习 卷积神经网络
下载PDF
基于FlowS-Unet的遥感图像建筑物变化检测 被引量:33
9
作者 顾炼 许诗起 竺乐庆 《自动化学报》 EI CSCD 北大核心 2020年第6期1291-1300,共10页
针对目前人为探察土地资源利用情况的任务繁重、办事效率低下等问题,提出了一种基于深度卷积神经网络的建筑物变化检测方法,利用高分辨率遥感图像实时检测每个区域新建与扩建的建筑物,以方便对土地资源进行有效管理.本文受超列(Hypercol... 针对目前人为探察土地资源利用情况的任务繁重、办事效率低下等问题,提出了一种基于深度卷积神经网络的建筑物变化检测方法,利用高分辨率遥感图像实时检测每个区域新建与扩建的建筑物,以方便对土地资源进行有效管理.本文受超列(Hypercolumn)和FlowNet中的细化(Refinement)结构启发,将细化和其他改进应用到U-Net,提出FlowS-Unet网络.首先对遥感图像裁剪、去噪、标注语义制作数据集,将该数据集划分为训练集和测试集,对训练集进行数据增强,并根据训练集图像的均值和方差对所有图像进行归一化;然后将训练集输入集成了多尺度交叉训练、多重损失计算、Adam优化的全卷积神经网络FlowS-Unet中进行训练;最后对网络模型的预测结果进行膨胀、腐蚀以及孔洞填充等后处理得到最终的分割结果.本文以人工分割结果为参考标准进行对比测试,用FlowS-Unet检测得到的F1分数高达0.943,明显优于FCN和U-Net的预测结果.实验结果表明,FlowS-Unet能够实时准确地将新建与扩建的建筑物变化检测出来,并且该模型也可扩展到其他类似的图像检测问题中. 展开更多
关键词 FlowS-Unet 建筑物变化检测 卷积神经网络 多尺度交叉训练 多重损失
下载PDF
基于多特征融合的显著性目标检测算法 被引量:31
10
作者 张守东 杨明 胡太 《计算机科学与探索》 CSCD 北大核心 2019年第5期834-845,共12页
显著性目标检测是获取图像中视觉显著目标的任务,它是计算机视觉及相关研究领域的重要内容。当前在复杂的自然场景下基于深度学习的算法依然存在特征学习不足和检测错误率较高的问题,因此提出一种新颖的基于多特征融合的显著性目标检测... 显著性目标检测是获取图像中视觉显著目标的任务,它是计算机视觉及相关研究领域的重要内容。当前在复杂的自然场景下基于深度学习的算法依然存在特征学习不足和检测错误率较高的问题,因此提出一种新颖的基于多特征融合的显著性目标检测算法。以HDHF(hybrid deep and handcrafted feature)模型的预测显著图作为特征,融合全局像素的深度特征。此外,利用显著性提名获取候选目标的位置,并在各候选目标中添加中心先验。在全卷积神经网络中,利用前向传播算法最终预测得到像素级的显著性目标。在四个包含多个显著性目标和复杂背景的图像数据集上进行验证,实验结果表明,该算法有效地提高了复杂场景下显著性目标的检测精度,尤其是在背景复杂的图像上具有较优的检测效果。 展开更多
关键词 显著性目标检测 深度学习 复杂场景 卷积神经网络 多特征融合
下载PDF
基于深度学习的大棚及地膜农田无人机航拍监测方法 被引量:30
11
作者 孙钰 韩京冶 +3 位作者 陈志泊 史明昌 付红萍 杨猛 《农业机械学报》 EI CAS CSCD 北大核心 2018年第2期133-140,共8页
随着精准农业技术的发展,快速获取大棚和地膜农田面积及地理分布的需求越来越大,但沿用面向卫星遥感影像的解译方法处理无人机航拍影像,存在特征选择复杂、识别精度较低、处理时间长等问题。基于此,本文提出一种基于深度学习的大棚及地... 随着精准农业技术的发展,快速获取大棚和地膜农田面积及地理分布的需求越来越大,但沿用面向卫星遥感影像的解译方法处理无人机航拍影像,存在特征选择复杂、识别精度较低、处理时间长等问题。基于此,本文提出一种基于深度学习的大棚及地膜农田无人机航拍监测方法,即采用六旋翼无人机搭载索尼NEX-5k相机进行航拍作业,对采集到的558幅赤峰市王爷府镇地区的无人机航片进行正射校正与拼接,构建全卷积神经网络(Fully convolutional network,FCN),通过多尺度融合的方法实现了FCN的5个变种模型:FCN-32s、FCN-16s、FCN-8s、FCN-4s、FCN-2s,使用带动量的随机梯度下降算法端到端训练模型,自动提取并分类影像特征。FCN模型与ENVI商用遥感软件的基于像素的分类方法、e Cognition软件的面向对象的分类方法对比后表明:FCN-4s模型为识别大棚和地膜农田的最佳模型,对于测试区域的平均整体正确率为97%,而基于像素的分类方法平均整体正确率为74.1%,面向对象的分类方法平均整体正确率为81.78%。FCN-4s模型平均运行时间为16.85 s,是基于像素的分类方法运行时间的0.06%,是面向对象的分类方法运行时间的5.62%。本方法可快速准确获取大棚和地膜农田的地理分布及面积,满足设施农业对无人机航拍监测的需求。 展开更多
关键词 农业监测 无人机 深度学习 语义分割 卷积神经网络
下载PDF
全卷积网络多层特征融合的飞机快速检测 被引量:29
12
作者 辛鹏 许悦雷 +3 位作者 唐红 马时平 李帅 吕超 《光学学报》 EI CAS CSCD 北大核心 2018年第3期337-343,共7页
针对传统飞机检测方法准确率低、虚警率高、速度慢等问题,提出一种全卷积神经网络多层特征融合的飞机快速检测方法。将浅层和深层的特征经过采样后在同一尺度进行融合,以缓解由于深层特征图维度过低造成的对小目标表达不足的问题;修改... 针对传统飞机检测方法准确率低、虚警率高、速度慢等问题,提出一种全卷积神经网络多层特征融合的飞机快速检测方法。将浅层和深层的特征经过采样后在同一尺度进行融合,以缓解由于深层特征图维度过低造成的对小目标表达不足的问题;修改区域提取时的选框尺寸以适应实际图像中飞机的尺寸特征;用卷积层代替全连接层以减少网络参数并适应不同大小的输入图像;复用区域提取网络和检测网络的卷积层和学习的特征参数以保证检测的高效性。仿真结果表明,与典型的飞机检测方法相比,所提方法在测试集上取得了更高的准确率和更低的虚警率,同时大大加快了检测速度。 展开更多
关键词 机器视觉 飞机检测 卷积神经网络 浅层和深层特征 特征融合
原文传递
全卷积神经网络遥感影像道路提取方法 被引量:28
13
作者 刘笑 王光辉 +2 位作者 杨化超 刘宇 王耀 《遥感信息》 CSCD 北大核心 2018年第1期69-75,共7页
针对人工选取简单特征提取道路效果不理想以及深度神经网络隐藏层信息应用较少的现状,提出一种基于全卷积神经网络的遥感影像道路提取方法。采用初始区域获取、中心线提取、中心线校正的工作流程对资源三号影像进行道路提取。首先自动... 针对人工选取简单特征提取道路效果不理想以及深度神经网络隐藏层信息应用较少的现状,提出一种基于全卷积神经网络的遥感影像道路提取方法。采用初始区域获取、中心线提取、中心线校正的工作流程对资源三号影像进行道路提取。首先自动标注训练样本,完成全卷积神经网络训练,借助卷积层等隐藏层提取的复杂特征获取道路区域;然后依据道路长宽比、形态学运算和格拉斯-普克(Douglas-Peucker,DP)算法完成干扰图斑滤除和断裂区域连接等工作;最后使用Zhang-Suen算法提取中心线,并利用网络首层卷积结果进行中心线校正。实验结果表明,该方法能借助自主学习的特征和网络隐藏层信息实现道路较好提取,不同实验区域中平均准确度在90%以上。 展开更多
关键词 道路提取 高分辨率遥感影像 深度学习 卷积神经网络 边缘检测
下载PDF
全卷积神经网络用于遥感影像水体提取 被引量:27
14
作者 王雪 隋立春 +2 位作者 钟棉卿 李顶萌 党丽丽 《测绘通报》 CSCD 北大核心 2018年第6期41-45,共5页
提出了一种全卷积神经网络模型用于遥感影像的水体目标提取的方法,介绍了全卷积神经网络的基本原理及构建3种网络模型的过程。为了分析模型效果,首先搜集带有水体的影像数据,并将这些数据标注为水体和背景两类,然后利用构建的全卷积神... 提出了一种全卷积神经网络模型用于遥感影像的水体目标提取的方法,介绍了全卷积神经网络的基本原理及构建3种网络模型的过程。为了分析模型效果,首先搜集带有水体的影像数据,并将这些数据标注为水体和背景两类,然后利用构建的全卷积神经网络模型进行推理和学习获取先验模型,最后对测试影像进行水体提取试验。通过与传统的基于影像光谱特征的阈值法和基于图论的Grab Cut算法提取结果进行比较,验证了本文方法的可行性。 展开更多
关键词 遥感影像 水体提取 卷积神经网络 阈值法 GrabCut算法
下载PDF
结合均值漂移分割与全卷积神经网络的高分辨遥感影像分类 被引量:26
15
作者 方旭 王光辉 +2 位作者 杨化超 刘慧杰 闫立波 《激光与光电子学进展》 CSCD 北大核心 2018年第2期440-448,共9页
针对目前遥感影像分类应用中常用的浅层机器学习算法无法满足当前海量遥感影像数据环境下分类精度的问题,提出了一种将全卷积神经网络应用于遥感影像分类的方法;为了减少影像特征图在池化过程中自身特征的丢失,增加池化层与反卷积层的融... 针对目前遥感影像分类应用中常用的浅层机器学习算法无法满足当前海量遥感影像数据环境下分类精度的问题,提出了一种将全卷积神经网络应用于遥感影像分类的方法;为了减少影像特征图在池化过程中自身特征的丢失,增加池化层与反卷积层的融合;为了提高融合的可靠性,增加尺度变换层;为了获得更精细的边缘分类结果,考虑像素之间的空间相关性,采用均值漂移聚类分割获取像素的空间关系,通过统计聚类区域像素概率的和最大、方差最小的方法确定该区域对象的类别;选取典型地区的影像进行分类实验,并将所提出的分类方法与全卷积神经网络、支持向量机、人工神经网络方法进行对比。结果表明,所提出的分类方法的精度明显高于传统机器学习方法的精度。 展开更多
关键词 遥感 影像分类 卷积神经网络 高分辨率影像 均值漂移分割 反卷积融合
原文传递
基于图像的混凝土表面裂缝量化高效识别方法 被引量:26
16
作者 王超 贾贺 +2 位作者 张社荣 时铮 王枭华 《水力发电学报》 EI CSCD 北大核心 2021年第3期134-144,共11页
卷积神经网络(convolutional neural network,CNN)算法是目前进行裂缝图像识别的常用方法。但目前仍存在卷积神经网络过于复杂、训练参数多、设备配置要求高和检测实时性低等问题。针对以上问题,本文提出一种基于轻量化CNN的混凝土表面... 卷积神经网络(convolutional neural network,CNN)算法是目前进行裂缝图像识别的常用方法。但目前仍存在卷积神经网络过于复杂、训练参数多、设备配置要求高和检测实时性低等问题。针对以上问题,本文提出一种基于轻量化CNN的混凝土表面裂缝识别方法。通过搭建轻量化全卷积神经网络(light-weight full convolutional neural network,LFNet)解决目前经典的卷积神经网络中训练参数过多的问题;采用基于高斯梯度变化的阈值分权法,对存在裂缝的图像进行分析,提取裂缝特征;最后采用基于欧氏距离的裂缝宽度算法实现对裂缝宽度分析计算。实验结果表明,本文所提的LFNet优于目前经典的卷积神经网络,其精确率、召回率和综合评价函数值三个参数分别达到97.944%、98.277%、98.108%,裂缝宽度特征参数的计算误差可控制在0.5 mm以内。 展开更多
关键词 裂缝检测 图像识别 卷积神经网络 轻量化 阈值分权法
下载PDF
基于全卷积神经网络的坝面裂纹检测方法研究 被引量:26
17
作者 陈波 张华 +4 位作者 汪双 王皓冉 刘昭伟 李永龙 谢辉 《水力发电学报》 EI CSCD 北大核心 2020年第7期52-60,共9页
针对常规裂纹检测方法难适用于坝面裂纹检测的问题,提出一种基于全卷积神经网络的裂纹检测方法,主要解决混凝土坝面裂纹的定量化检测问题。该检测方法引入图像预处理与形态学后处理相结合的方式,分别对原始数据和预测结果进行优化,提升... 针对常规裂纹检测方法难适用于坝面裂纹检测的问题,提出一种基于全卷积神经网络的裂纹检测方法,主要解决混凝土坝面裂纹的定量化检测问题。该检测方法引入图像预处理与形态学后处理相结合的方式,分别对原始数据和预测结果进行优化,提升检测精度;并根据坝面数据特点对传统FCN(fully convolutional network)网络进行改进,得到针对性更强的裂纹检测网络C-FCN(crack fully convolutional network),提升对裂纹检测的准确率;结合成像原理提取定量化信息,避免繁杂的相机标定工作,更加高效客观。利用该检测方法对实际工程进行实测,像素准确率、召回率和交并比分别达到75.13%、86.84%和60.15%,相比传统FCN网络,三项指标分别提升5.61%、16.56%、13.22%,同时定量化误差小于5%,裂纹平均宽度均不超过5 mm。该检测方法能够实现对坝面裂纹的精准识别和定量,为坝面后期风险评估和维护提供有力的数据支撑,具有显著的工程意义。 展开更多
关键词 深度学习 卷积神经网络 坝面裂纹检测 双边滤波 定量化检测
原文传递
基于深度学习的重力异常与重力梯度异常联合反演 被引量:24
18
作者 张志厚 廖晓龙 +7 位作者 曹云勇 侯振隆 范祥泰 徐正宣 路润琪 冯涛 姚禹 石泽玉 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2021年第4期1435-1452,共18页
高效高精度的反演算法在重力大数据时代背景下显得尤为重要,受深度学习卓越的非线性映射能力的启发,本文提出了一种基于深度学习的重力异常及重力梯度异常的联合反演方法.文中首先提出了一种基于网格点几何格架的重力异常及重力梯度异... 高效高精度的反演算法在重力大数据时代背景下显得尤为重要,受深度学习卓越的非线性映射能力的启发,本文提出了一种基于深度学习的重力异常及重力梯度异常的联合反演方法.文中首先提出了一种基于网格点几何格架的重力异常及重力梯度异常的空间域快速正演算法,这为本文深度学习反演算法的实现奠定了基础;其次对大量的不同密度模型进行正演计算获得样本数据集;然后设计了一种端到端的深度学习网络结构(GraInvNet),再利用样本数据对该网络结构进行训练;最后进行反演预测.组合模型试验表明,多维度数据联合反演相比单一分量反演其结果更“聚焦”,且与模型边界高度吻合,并且对于复杂模型的姿态与物性预测具有极为显著的优势,以及对于含噪声数据的反演,其质量也不会降低;Vinton岩丘实测重力数据也验证了文中方法的有效性;从而证明了深度学习在重力数据的高效高精度反演方面具有的巨大潜力. 展开更多
关键词 重力异常与重力梯度异常 卷积神经网络 快速正演 联合反演
下载PDF
基于全卷积神经网络的肝脏CT影像分割研究 被引量:24
19
作者 郭树旭 马树志 +6 位作者 李晶 张惠茅 孙长建 金兰依 刘晓鸣 刘奇楠 李雪妍 《计算机工程与应用》 CSCD 北大核心 2017年第18期126-131,共6页
针对腹部CT影像邻近器官对比度较低及因个体肝脏形状差异较大等引起肝脏分割困难的问题,提出了全卷积神经网络肝脏分割模型。首先通过卷积神经网络提取图像深层、抽象的特征,再通过反卷积运算对提取到的特征映射进行插值重构后得到分割... 针对腹部CT影像邻近器官对比度较低及因个体肝脏形状差异较大等引起肝脏分割困难的问题,提出了全卷积神经网络肝脏分割模型。首先通过卷积神经网络提取图像深层、抽象的特征,再通过反卷积运算对提取到的特征映射进行插值重构后得到分割结果。由于单纯进行反卷积得到的分割结果往往比较粗糙,因此,在反卷积之前,先融合高层与低层的特征,并且通过增加反卷积的层数、减少反卷积步长,得到了更为精确的分割结果。与传统卷积神经网络的分割方法相比,该模型可以充分利用CT影像的空间信息。实验数据表明该模型能够使腹部CT影像肝脏分割具有较高的精度。 展开更多
关键词 深度学习 卷积神经网络 医学图像分割
下载PDF
基于生成对抗网络的小样本数据生成技术研究 被引量:22
20
作者 杨懿男 齐林海 +1 位作者 王红 苏林萍 《电力建设》 北大核心 2019年第5期71-77,共7页
基于数据驱动的深度学习技术成为新一代智能电网的应用趋势,该技术对电网中有标注训练数据的量级提出更高的要求。为了获取更多有标注的智能电网样本数据,文章提出了一种基于改进的生成对抗网络(generative adversarial network,GAN)的... 基于数据驱动的深度学习技术成为新一代智能电网的应用趋势,该技术对电网中有标注训练数据的量级提出更高的要求。为了获取更多有标注的智能电网样本数据,文章提出了一种基于改进的生成对抗网络(generative adversarial network,GAN)的训练样本生成算法。该方法通过交替训练改进GAN的生成模型与判别模型,无需先验知识的指导,自主学习原始样本的分布规律,生成新的数据样本。然后采用人工神经网络作为基础分类器,计算样本分类的准确率,检验生成样本的有效性。实验表明,改进GAN模型可以有效学习样本的分布规律,提升谐波分类的准确率,该方法同时具有良好的抗噪性和泛化性,对深度学习技术在智能电网中的深入发展具有重要意义。 展开更多
关键词 智能电网 深度学习 卷积神经网络 生成对抗网络(GAN) 样本生成
原文传递
上一页 1 2 24 下一页 到第
使用帮助 返回顶部