期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于全局能量特征与改进PCNN的红外与可见光图像融合
1
作者 邢延超 牛振华 《红外技术》 CSCD 北大核心 2024年第8期902-911,共10页
为了改善红外与可见光融合图像存在不清晰、图像对比度低以及缺少纹理细节的问题,本文提出了一种基于参数自适应脉冲耦合神经网络(parameter-adaptive pulse-coupled neural network,PAPCNN)图像融合算法。首先,对源红外图像进行暗通道... 为了改善红外与可见光融合图像存在不清晰、图像对比度低以及缺少纹理细节的问题,本文提出了一种基于参数自适应脉冲耦合神经网络(parameter-adaptive pulse-coupled neural network,PAPCNN)图像融合算法。首先,对源红外图像进行暗通道去雾,增强图像的清晰度;然后,使用非下采样剪切波变换(non-subsampled shearlet transform,NSST)分解源图像,使用全局能量特征结合改进的空间频率自适应权重融合低频系数,将纹理能量作为PA-PCNN外部输入融合高频系数;最后,通过逆NSST变换得到最终融合灰度图像。本文方法与7种经典算法在2组图像中进行对比实验,实验结果表明:本文方法在评价指标中明显优于对比算法,提高了融合图像的清晰度和细节信息,验证了本文方法的有效性。将灰度图像转为伪彩色图像进一步增强了融合图像的辨识度和人眼的感知效果。 展开更多
关键词 图像融合 非下采样剪切波变换 全局能量特征 纹理能量 脉冲耦合神经网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部