期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于分块压缩感知的图像全局重构模型 被引量:12
1
作者 李然 干宗良 朱秀昌 《信号处理》 CSCD 北大核心 2012年第10期1416-1422,共7页
已有的基于分块压缩感知(Block Compressed Sensing,Block CS)的图像重构模型采用相同的测量矩阵以块×块的方式获取数据,解决了传统CS方法中测量矩阵所需存储量较大的问题,但由于采用分块重构,没有考虑到图像的全局稀疏度,出现了... 已有的基于分块压缩感知(Block Compressed Sensing,Block CS)的图像重构模型采用相同的测量矩阵以块×块的方式获取数据,解决了传统CS方法中测量矩阵所需存储量较大的问题,但由于采用分块重构,没有考虑到图像的全局稀疏度,出现了大量的块效应。本文分析了图像分块重构产生块效应的三个主要原因:块稀疏度不均匀、频谱泄漏和块尺寸受限,提出了一种基于Block CS的图像全局重构模型。该模型在编码端采用高斯随机矩阵逐块作非相关测量;在解码端,引入排序算子,重新构造测量矩阵,该测量矩阵既适合于进行全局重构,又适合于分块测量的CS观测值,并仍与图像的稀疏矩阵高度不相关,所以其可充分利用图像的全局稀疏度进行CS重构。仿真实验表明,所提出的全局重构模型有效地消除了块效应现象,并且对块尺寸的变化有较强的鲁棒性。 展开更多
关键词 分块压缩感知 稀疏 分块重构 全局稀疏 全局重构 块效应
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部