期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
利用优化剪枝GoogLeNet的人脸表情识别方法 被引量:14
1
作者 张宏丽 白翔宇 《计算机工程与应用》 CSCD 北大核心 2021年第19期179-188,共10页
为了提高人脸表情识别的准确率和加快处理速度,提出了一种基于优化剪枝GoogLeNet的人脸表情识别方法。利用GoogLeNet网络提取面部特征,其中Inception模块加深学习深度,并利用典型的分类器实现人脸表情分类。改进GoogLeNet网络,添加全局... 为了提高人脸表情识别的准确率和加快处理速度,提出了一种基于优化剪枝GoogLeNet的人脸表情识别方法。利用GoogLeNet网络提取面部特征,其中Inception模块加深学习深度,并利用典型的分类器实现人脸表情分类。改进GoogLeNet网络,添加全局最大池化层并保留检测目标的位置信息,以Sigmoid交叉熵作为训练目标,获得全面的人脸表情特征信息。通过剪枝算法对GoogLeNet网络进行训练、修剪低权重连接和再训练网络等操作,以简化网络结构和参数量,提高运行效率。在JAFFE、CK+和Cohn-Kanade数据集上对所提方法进行验证,实验结果表明,所提方法的识别准确率分别为83.84%、85.09%和84.87%,运行时间低于200 ms,优于对比方法,具有较好的适用性。 展开更多
关键词 剪枝算法 GoogLeNet 人脸表情识别 Inception模块 全局最大 运行效率
下载PDF
基于改进Bilinear CNN的细粒度图像分类方法 被引量:2
2
作者 田佳鹭 邓立国 《计算机与数字工程》 2021年第5期977-981,1017,共6页
为提高细粒度图像分类的精确度,提出一种基于双线性网络(Bilinear CNN)的改进方法。首先,选取结构紧密的DenseNet121卷积部分作为特征提取模块,运用改进的Relu-and-Softplus激活函数;接着,结合注意力机制引入空间注意力模块和通道注意... 为提高细粒度图像分类的精确度,提出一种基于双线性网络(Bilinear CNN)的改进方法。首先,选取结构紧密的DenseNet121卷积部分作为特征提取模块,运用改进的Relu-and-Softplus激活函数;接着,结合注意力机制引入空间注意力模块和通道注意力模块,在整体性和局部性上有效提取细节特征;并增加一层卷积层实现调整特征图维度的过渡作用,通过特征图分组策略有效降低特征向量维度减少参数;在双线性池化后采用全局最大池化层处理N个双线性特征向量,融合得到用于Softmax分类的最终向量。经实验证明,新模型的分类精确度可达到96.869%,参数量也大幅度降低,工作效率显著提高。 展开更多
关键词 细粒度分类 Bilinear CNN 注意力模块 分组策略 全局最大
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部