期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
联合均等采样随机擦除和全局时间特征池化的视频行人重识别方法 被引量:4
1
作者 陈莉 王洪元 +2 位作者 张云鹏 曹亮 殷雨昌 《计算机应用》 CSCD 北大核心 2021年第1期164-169,共6页
针对为解决视频监控中遮挡、背景物干扰,以及行人外观、姿势相似性等因素导致的视频行人重识别准确率较低的问题,提出了联合均等采样随机擦除和全局时间特征池化的视频行人重识别方法。首先针对目标行人被干扰或部分遮挡的情况,采用了... 针对为解决视频监控中遮挡、背景物干扰,以及行人外观、姿势相似性等因素导致的视频行人重识别准确率较低的问题,提出了联合均等采样随机擦除和全局时间特征池化的视频行人重识别方法。首先针对目标行人被干扰或部分遮挡的情况,采用了均等采样随机擦除(ESE)的数据增强方法来有效地缓解遮挡,提高模型的泛化能力,更准确地匹配行人;其次为了进一步提高视频行人重识别的精度,学习更有判别力的特征表示,使用三维卷积神经网络(3DCNN)提取时空特征,并在网络输出行人特征表示前加上全局时间特征池化层(GTFP),这样既能获取上下文的空间信息,又能细化帧与帧之间的时序信息。通过在MARS、DukeMTMC-VideoReID和PRID-2011三个公共视频数据集上的大量实验,证明所提出的联合均等采样随机擦除和全局时间特征池化的方法,相较于目前一些先进的视频行人重识别方法,具有一定的竞争力。 展开更多
关键词 视频行人重识别 三维卷积神经网络 全局时间特征表示 均等采样随机擦除 数据增强
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部