期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
数据点位置并行FP-Growth挖掘算法仿真 被引量:4
1
作者 乔阳阳 王丽娟 《计算机仿真》 北大核心 2023年第5期501-505,共5页
当数据集发生非法入侵时,原数据属性会遭到破坏,且由于数据本身的不确定性及噪声等问题,入侵数据点位置的挖掘难度较大。为此,提出基于并行频繁模式增长算法(Frequent Pattern Growth, FP-Growth)的数据点位置智能挖掘方法。建立信息熵... 当数据集发生非法入侵时,原数据属性会遭到破坏,且由于数据本身的不确定性及噪声等问题,入侵数据点位置的挖掘难度较大。为此,提出基于并行频繁模式增长算法(Frequent Pattern Growth, FP-Growth)的数据点位置智能挖掘方法。建立信息熵-主成分分析法融合算法(Entropy-Principle Compoent Analysis, E-PCA),对大数据降维。融合入侵检测和K均值聚类算法(Intrusion Detection Systems K-means clustering algorithm, IDS K-means算法)和并行FP-Growth算法,实现入侵数据的检测。利用邻居节点数据投票的方式实现入侵数据点位置智能挖掘。实验表明,所提方法检测入侵数据时误报率低于1.0%,数据点位置挖掘准确率高于98%,且能够精准实现正常数据与异常数据的聚类。以上结果均证明了所提方法具有更优的应用性能。 展开更多
关键词 并行算法 数据点位置挖掘 入侵数据检测
下载PDF
基于粗糙集的公共网络入侵检测方法研究 被引量:8
2
作者 庞帮艳 张艳敏 《现代电子技术》 北大核心 2017年第4期28-31,共4页
传统方法在对公共网络入侵数据检测时存在冗余度高、维数大、精确度差等问题。为了提高公共网络安全防护的实时性和有效性,提出一种基于优化粗糙集理论的公共网络检测方法。针对有入侵风险的数据进行检测和筛选,在粗糙集(RS)概念基础上... 传统方法在对公共网络入侵数据检测时存在冗余度高、维数大、精确度差等问题。为了提高公共网络安全防护的实时性和有效性,提出一种基于优化粗糙集理论的公共网络检测方法。针对有入侵风险的数据进行检测和筛选,在粗糙集(RS)概念基础上对其精度进行优化,减少信息的丢失,运用MDLP运算准则完成对数据的离散化处理,使用遗传算法进行数据约简,导出数据分类规则并识别出入侵数据。仿真试验结果表明,所提出的入侵数据检测方法,在入侵检测率和误差率方面传统算法更为有效。 展开更多
关键词 网络入侵数据检测 离散化处理 遗传算法 数据约简
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部