期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于多尺度分割的高光谱图像稀疏表示与分类 被引量:19
1
作者 唐中奇 付光远 +1 位作者 陈进 张利 《光学精密工程》 EI CAS CSCD 北大核心 2015年第9期2708-2714,共7页
针对高光谱特征的稀疏表示,提出了一种基于多尺度分割的空间加权算法用于高光谱图像分类。该算法采用更合理的邻域定义挖掘空间先验信息,优化类边缘像元的稀疏表示。首先,通过多尺度分割提供邻域空间约束;结合拉普拉斯尺度混合(LSM)先验... 针对高光谱特征的稀疏表示,提出了一种基于多尺度分割的空间加权算法用于高光谱图像分类。该算法采用更合理的邻域定义挖掘空间先验信息,优化类边缘像元的稀疏表示。首先,通过多尺度分割提供邻域空间约束;结合拉普拉斯尺度混合(LSM)先验,分别对每个邻域组内像元进行空间加权的稀疏表示。然后,采用概率支持向量机(SVM)分类,同时提供像元的分类标签及其置信度。最后,以此置信度为权重,对多尺度分类图进行加权融合,生成最终的分类图。实验显示,本文算法能够增强光谱特征表示的稀疏性和鲁棒性,提高总体分类精度;在小样本训练下,单类的分类精度可提升30%左右,表明该算法在高光谱应用中具有较强的实用性。 展开更多
关键词 光谱图像分类 光谱稀疏表示 空间先验融合 多尺度策略
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部