期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于模型集群的马铃薯叶绿素检测光谱变量筛选讨论 被引量:7
1
作者 刘宁 邢子正 +3 位作者 乔浪 李民赞 孙红 Qin Zhang 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2020年第7期2259-2266,共8页
为了探究马铃薯作物叶绿素吸收特征,充分解析光谱特征波长变量,建立高精度叶绿素含量检测模型。在马铃薯发棵期(M1)、块茎形成期(M2)、块茎膨大期(M3)和淀粉积累期(M4)4个关键生长期,利用ASD便携式光谱仪采集80个样本区的314组作物冠层... 为了探究马铃薯作物叶绿素吸收特征,充分解析光谱特征波长变量,建立高精度叶绿素含量检测模型。在马铃薯发棵期(M1)、块茎形成期(M2)、块茎膨大期(M3)和淀粉积累期(M4)4个关键生长期,利用ASD便携式光谱仪采集80个样本区的314组作物冠层反射率数据,并同步采集叶片测定叶绿素含量。在光谱数据预处理之后,分析了马铃薯不同生长期的光谱反射率变化特征。利用基于模型集群思想的蒙特卡洛无信息变量消除(MC-UVE)、随机蛙跳(RF)、竞争自适应重加权采样(CARS)三种算法筛选叶绿素特征波长,建立叶绿素含量检测PLS模型。对4个生长期的314个样本,采用SPXY算法分别按照3∶1的比例划分,得到建模集240个样本、验证集74个样本。利用MC-UVE, RF, CARS三种算法筛选叶绿素特征波长,讨论迭代次数(N)和特征变量个数(LV)对MC-UVE和RF算法、迭代次数(N)对CARS算法筛选特征波长结果的影响,对迭代次数设置6个梯度,分别为N=50, 100, 500, 1 000, 5 000和10 000;对特征变量数设置4个梯度,分别为LV=15, 20, 25和30。以PLSR模型的验证集结果为评价指标,分析迭代次数(N)和特征变量数(LV)的最优参数组合。最后基于MC-UVE, RF和CARS算法筛选得到的最佳特征波长建立叶绿素检测PLSR模型,分别记为MC-UVE-PLSR, RF-PLSR, CARS-PLSR。结果表明, CARS, RF和MC-UVE三种算法的迭代次数(N)、特征变量数(LV)参数最佳组合分别为:(1)MC-UVE:迭代次数N=50特征变量数LV=30;(2)RF:迭代次数N=500、特征变量数LV=30;(3)CARS:迭代次数N=100。对比在最佳特征波长建立的MC-UVE-PLSR, RF-PLSR, CARS-PLSR叶绿素含量检测,发现RF-PLSRRR模型的性能最优,R^2v为0.786, RMSEV为3.415 mg·L^-1;MC-UVE-PLS模型性能次之,R^2v为0.696, RMSEV为4.072 mg·L^-1;CARS-PLS模型的性能最差,R^2v为0.689, RMSEV为4.183 mg·L^-1。以上结果说明:在筛选马铃薯叶绿素特征波长方面RF算法优于MC-UVE和CARS,得到的特征 展开更多
关键词 马铃薯 叶绿素检测 模型集群 光谱变量筛选 偏最小二乘(PLS)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部