ORB(Oriented FAST and Rotated BRIEF)算法提取特征点时使用固定阈值,在不同场景或光照突变环境中会出现特征点匹配数目较少、匹配正确率较低、适应性较差的问题,针对这一情况提出了一种全局自适应阈值与局部自适应阈值结合的方式改进...ORB(Oriented FAST and Rotated BRIEF)算法提取特征点时使用固定阈值,在不同场景或光照突变环境中会出现特征点匹配数目较少、匹配正确率较低、适应性较差的问题,针对这一情况提出了一种全局自适应阈值与局部自适应阈值结合的方式改进算法。首先根据图像的灰度分布判断亮度变化情况,针对整体亮度变化与局部亮度变化两种情况分别采用全局或半全局自适应阈值方案,并与局部自适应阈值相结合,通过建立评价函数得到阈值计算公式中自适应参数值,完成FAST(Features from Accelerated Segment Test)特征点提取,计算描述子,借助KNN(K-nearest Neighbor)算法完成特征点对筛选。实验结果表明,改进后的ORB算法在整体光照变化时特征匹配点对数量平均提升129.9%,正确率平均提升15.94%,局部光照变化时特征匹配点对数量平均提升149.4%,正确率平均提升3.53%。展开更多
文摘ORB(Oriented FAST and Rotated BRIEF)算法提取特征点时使用固定阈值,在不同场景或光照突变环境中会出现特征点匹配数目较少、匹配正确率较低、适应性较差的问题,针对这一情况提出了一种全局自适应阈值与局部自适应阈值结合的方式改进算法。首先根据图像的灰度分布判断亮度变化情况,针对整体亮度变化与局部亮度变化两种情况分别采用全局或半全局自适应阈值方案,并与局部自适应阈值相结合,通过建立评价函数得到阈值计算公式中自适应参数值,完成FAST(Features from Accelerated Segment Test)特征点提取,计算描述子,借助KNN(K-nearest Neighbor)算法完成特征点对筛选。实验结果表明,改进后的ORB算法在整体光照变化时特征匹配点对数量平均提升129.9%,正确率平均提升15.94%,局部光照变化时特征匹配点对数量平均提升149.4%,正确率平均提升3.53%。