为了研究重庆市北碚城区大气碳质气溶胶组分的污染特征,于2014年3月~2015年2月采用安德森采样器采集大气颗粒物样品,用DRI Model 2001 A热光碳分析仪测定其中有机碳(OC)和元素碳(EC)的质量浓度.结果表明,北碚城区PM_(2.1)和PM_(9.0)中OC...为了研究重庆市北碚城区大气碳质气溶胶组分的污染特征,于2014年3月~2015年2月采用安德森采样器采集大气颗粒物样品,用DRI Model 2001 A热光碳分析仪测定其中有机碳(OC)和元素碳(EC)的质量浓度.结果表明,北碚城区PM_(2.1)和PM_(9.0)中OC和EC的年平均浓度分别为(16.3±7.6)、(1.8±0.7)和(25.0±9.7)、(3.2±1.3)μg·m-3.在PM_(2.1)中,OC和EC均呈现出冬春季大于夏秋季的季节变化特征,而PM_(9.0)中OC呈现出夏春季大于冬秋季,EC呈现出冬春季大于夏秋季的季节变化特征.对全年OC和EC的粒径进行分析,发现OC在整个粒径上呈现"双峰型"分布,其中细粒子段峰值位于0.43~0.65μm粒径段,粗粒子段峰值位于4.7~5.8μm粒径段;EC呈现出"三峰型"分布,其中细粒子段峰值位于0.43~0.65μm粒径段,粗粒子段峰值位于4.7~5.8μm粒径段,同时2.1~3.3μm粒径段也出现一个明显峰值.对OC和EC进行相关性分析并对PM_(2.1)中的SOC进行估算,发现北碚城区全年SOC浓度为(6.3±5.9)μg·m-3,占全年OC的33.5%±22.6%,且OC和EC显著相关.最后对北碚城区大气气溶胶的污染来源进行分析,发现污染主要来源于汽油车尾气、生物质燃烧和燃煤排放.展开更多
采集了忻州市4个监测点位采暖季和非采暖季环境空气PM10样品,利用Elementar Analysensysteme GmbH vario EL cube测定有机碳(organic carbon,OC)和元素碳(elemental carbon,EC)的质量浓度,通过OC和EC的时空分布、比值以及相关性分析揭...采集了忻州市4个监测点位采暖季和非采暖季环境空气PM10样品,利用Elementar Analysensysteme GmbH vario EL cube测定有机碳(organic carbon,OC)和元素碳(elemental carbon,EC)的质量浓度,通过OC和EC的时空分布、比值以及相关性分析揭示忻州市的碳组分污染特征.结果表明,忻州市PM10中OC和EC的平均质量浓度分别为(18.5±4.5)μg·m-3和(16.1±4.3)μg·m-3,采暖季和非采暖季TCA占PM10的比例分别为70.7%和43.8%;4个监测点位采暖季OC的质量浓度均高于非采暖季,XT、DC和KQ监测点采暖季EC的质量浓度高于非采暖季,SQ监测点则相反,采暖季燃煤是OC和EC的主要来源;监测点XT的OC质量浓度最高,为24.1μg·m-3,DC的EC质量浓度最高,为22.0μg·m-3,SQ的OC和EC质量浓度最低,分别为17.2μg·m-3和14.5μg·m-3,区域性污染特征存在差异;OC/EC均值小于2,一次污染严重;非采暖季OC与EC浓度相关性较好(R2=0.55),二者排放源单一,主要来源为机动车尾气排放,采暖季相关性不显著(R2=0.13),二者排放源复杂.忻州市主要通过控制燃煤、机动车尾气、生物质燃烧、工业源等的一次排放来减轻碳组分污染,进而提高环境空气质量.展开更多
PM_(2.5)是大气的重要污染物之一,其成分复杂,为研究PM_(2.5)的污染特征及来源,于2016年3月采集南京北郊地区大气中的PM_(2.5),利用Dinoex ICS-3000和ICS-2000型离子色谱和DRI Model 2001A热/光碳分析仪分别测定了PM_(2.5)中的阴阳离子...PM_(2.5)是大气的重要污染物之一,其成分复杂,为研究PM_(2.5)的污染特征及来源,于2016年3月采集南京北郊地区大气中的PM_(2.5),利用Dinoex ICS-3000和ICS-2000型离子色谱和DRI Model 2001A热/光碳分析仪分别测定了PM_(2.5)中的阴阳离子和碳质组分,利用元素分析仪-同位素质谱仪测定大气PM_(2.5)中的总碳同位素(δ^(13)CTC)组成特征.结果表明,2016年3月期间南京北郊地区PM_(2.5)污染严重,平均浓度达(106.16±48.70)μg·m^(-3),且88%观测天中存在明显的二次有机污染,SOC平均浓度为(3.58±2.78)μg·m^(-3),且在晴天条件下高浓度的二次有机碳(SOC)与紫外线作用下的O_3具有较强的相关性.大气PM_(2.5)中δ^(13)CTC值范围是-26.56‰^-23.75‰,平均值为(-25.47‰±0.63‰),结合化学组分的三相聚类分析结果可知,大气PM_(2.5)主要来源于燃煤过程、机动车排放,此外还受地质源和生物质燃烧源的影响.展开更多
文摘为了研究重庆市北碚城区大气碳质气溶胶组分的污染特征,于2014年3月~2015年2月采用安德森采样器采集大气颗粒物样品,用DRI Model 2001 A热光碳分析仪测定其中有机碳(OC)和元素碳(EC)的质量浓度.结果表明,北碚城区PM_(2.1)和PM_(9.0)中OC和EC的年平均浓度分别为(16.3±7.6)、(1.8±0.7)和(25.0±9.7)、(3.2±1.3)μg·m-3.在PM_(2.1)中,OC和EC均呈现出冬春季大于夏秋季的季节变化特征,而PM_(9.0)中OC呈现出夏春季大于冬秋季,EC呈现出冬春季大于夏秋季的季节变化特征.对全年OC和EC的粒径进行分析,发现OC在整个粒径上呈现"双峰型"分布,其中细粒子段峰值位于0.43~0.65μm粒径段,粗粒子段峰值位于4.7~5.8μm粒径段;EC呈现出"三峰型"分布,其中细粒子段峰值位于0.43~0.65μm粒径段,粗粒子段峰值位于4.7~5.8μm粒径段,同时2.1~3.3μm粒径段也出现一个明显峰值.对OC和EC进行相关性分析并对PM_(2.1)中的SOC进行估算,发现北碚城区全年SOC浓度为(6.3±5.9)μg·m-3,占全年OC的33.5%±22.6%,且OC和EC显著相关.最后对北碚城区大气气溶胶的污染来源进行分析,发现污染主要来源于汽油车尾气、生物质燃烧和燃煤排放.
文摘采集了忻州市4个监测点位采暖季和非采暖季环境空气PM10样品,利用Elementar Analysensysteme GmbH vario EL cube测定有机碳(organic carbon,OC)和元素碳(elemental carbon,EC)的质量浓度,通过OC和EC的时空分布、比值以及相关性分析揭示忻州市的碳组分污染特征.结果表明,忻州市PM10中OC和EC的平均质量浓度分别为(18.5±4.5)μg·m-3和(16.1±4.3)μg·m-3,采暖季和非采暖季TCA占PM10的比例分别为70.7%和43.8%;4个监测点位采暖季OC的质量浓度均高于非采暖季,XT、DC和KQ监测点采暖季EC的质量浓度高于非采暖季,SQ监测点则相反,采暖季燃煤是OC和EC的主要来源;监测点XT的OC质量浓度最高,为24.1μg·m-3,DC的EC质量浓度最高,为22.0μg·m-3,SQ的OC和EC质量浓度最低,分别为17.2μg·m-3和14.5μg·m-3,区域性污染特征存在差异;OC/EC均值小于2,一次污染严重;非采暖季OC与EC浓度相关性较好(R2=0.55),二者排放源单一,主要来源为机动车尾气排放,采暖季相关性不显著(R2=0.13),二者排放源复杂.忻州市主要通过控制燃煤、机动车尾气、生物质燃烧、工业源等的一次排放来减轻碳组分污染,进而提高环境空气质量.
文摘PM_(2.5)是大气的重要污染物之一,其成分复杂,为研究PM_(2.5)的污染特征及来源,于2016年3月采集南京北郊地区大气中的PM_(2.5),利用Dinoex ICS-3000和ICS-2000型离子色谱和DRI Model 2001A热/光碳分析仪分别测定了PM_(2.5)中的阴阳离子和碳质组分,利用元素分析仪-同位素质谱仪测定大气PM_(2.5)中的总碳同位素(δ^(13)CTC)组成特征.结果表明,2016年3月期间南京北郊地区PM_(2.5)污染严重,平均浓度达(106.16±48.70)μg·m^(-3),且88%观测天中存在明显的二次有机污染,SOC平均浓度为(3.58±2.78)μg·m^(-3),且在晴天条件下高浓度的二次有机碳(SOC)与紫外线作用下的O_3具有较强的相关性.大气PM_(2.5)中δ^(13)CTC值范围是-26.56‰^-23.75‰,平均值为(-25.47‰±0.63‰),结合化学组分的三相聚类分析结果可知,大气PM_(2.5)主要来源于燃煤过程、机动车排放,此外还受地质源和生物质燃烧源的影响.