期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于卷积神经网络与区域生长法的建筑裂缝识别
被引量:
9
1
作者
吴子燕
贾大卫
王其昂
《应用基础与工程科学学报》
EI
CSCD
北大核心
2022年第2期317-327,共11页
基于卷积神经网络(CNN)的建筑裂缝识别结果大多为含有裂缝的面元图像,而并非裂缝本身.本文将CNN与区域生长法结合,提出一种两阶段方法用于提取像素级别的裂缝特征.利用数据扩充法建立裂缝图像数据库,选择包括Alexnet、Vgg16、Vgg19、Inc...
基于卷积神经网络(CNN)的建筑裂缝识别结果大多为含有裂缝的面元图像,而并非裂缝本身.本文将CNN与区域生长法结合,提出一种两阶段方法用于提取像素级别的裂缝特征.利用数据扩充法建立裂缝图像数据库,选择包括Alexnet、Vgg16、Vgg19、Inception-V3和ResNet50的5种典型CNN用于裂缝识别.综合考虑样本图像的整体准确率,单张图像的裂缝识别精确度及背景图像的置信度,确定精度最高的CNN,得到裂缝面元图像;利用区域生长法对CNN识别的裂缝面元图像进行裂缝特征提取,得到像素级别的裂缝图像.研究表明,Inception-V3网络在裂缝识别中具有较高的识别精度;通过区域生长法进行裂缝特征提取,可以得到精度较高的像素级别裂缝特征图像.该研究提供了一种高精度的建筑裂缝识别方法.
展开更多
关键词
裂缝
识别
像素
级
裂缝
卷积神经网络
区域生长法
精度检验
原文传递
题名
基于卷积神经网络与区域生长法的建筑裂缝识别
被引量:
9
1
作者
吴子燕
贾大卫
王其昂
机构
西北工业大学力学与土木建筑学院
中国矿业大学力学与建筑工程学院
出处
《应用基础与工程科学学报》
EI
CSCD
北大核心
2022年第2期317-327,共11页
基金
国家自然科学基金项目(51708545)
西北工业大学研究生创意创新种子基金项目(ZZ2019212)。
文摘
基于卷积神经网络(CNN)的建筑裂缝识别结果大多为含有裂缝的面元图像,而并非裂缝本身.本文将CNN与区域生长法结合,提出一种两阶段方法用于提取像素级别的裂缝特征.利用数据扩充法建立裂缝图像数据库,选择包括Alexnet、Vgg16、Vgg19、Inception-V3和ResNet50的5种典型CNN用于裂缝识别.综合考虑样本图像的整体准确率,单张图像的裂缝识别精确度及背景图像的置信度,确定精度最高的CNN,得到裂缝面元图像;利用区域生长法对CNN识别的裂缝面元图像进行裂缝特征提取,得到像素级别的裂缝图像.研究表明,Inception-V3网络在裂缝识别中具有较高的识别精度;通过区域生长法进行裂缝特征提取,可以得到精度较高的像素级别裂缝特征图像.该研究提供了一种高精度的建筑裂缝识别方法.
关键词
裂缝
识别
像素
级
裂缝
卷积神经网络
区域生长法
精度检验
Keywords
crack identification
pixel-level crack
convolutional neural network
regional growth method
precision test
分类号
TU317 [建筑科学—结构工程]
原文传递
题名
作者
出处
发文年
被引量
操作
1
基于卷积神经网络与区域生长法的建筑裂缝识别
吴子燕
贾大卫
王其昂
《应用基础与工程科学学报》
EI
CSCD
北大核心
2022
9
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部