Abstract Data-driven tools, such as principal component analysis (PCA) and independent component analysis (ICA) have been applied to different benchmarks as process monitoring methods. The difference between the t...Abstract Data-driven tools, such as principal component analysis (PCA) and independent component analysis (ICA) have been applied to different benchmarks as process monitoring methods. The difference between the two methods is that the components of PCA are still dependent while ICA has no orthogonality constraint and its latentvariables are independent. Process monitoring with PCA often supposes that process data or principal components is Gaussian distribution. However, this kind of constraint cannot be satisfied by several practical processes. To ex-tend the use of PCA, a nonparametric method is added to PCA to overcome the difficulty, and kernel density estimation (KDE) is rather a good choice. Though ICA is based on non-Gaussian distribution intormation, .KDE can help in the close monitoring of the data. Methods, such as PCA, ICA, PCA.with .KDE(KPCA), and ICA with KDE,(KICA), are demonstrated and. compared by applying them to a practical industnal Spheripol craft polypropylene catalyzer reactor instead of a laboratory emulator.展开更多
The design of hollow mesoporous nanostructures for cascade catalytic reactions can inject new vitality into the development of nanostructures. In this study, we report a versatile cooperative template-directed coating...The design of hollow mesoporous nanostructures for cascade catalytic reactions can inject new vitality into the development of nanostructures. In this study, we report a versatile cooperative template-directed coating method for the synthesis of hollow and yolk-shell mesoporous zirconium titanium oxide nanospheres with varying compositions (ZrO2 content from 0 to 100%), high surface areas (465 m2·g-1) and uniform mesopores. In particular, the hexadecylamine (HDA) used in the coating procedure serves as a soft template for silica@mesostructured metal oxide core-shell nanosphere formation. By a facile solvothermal treatment route with an ammonia solution and calcination in air, the silica@mesostructured zirconium titanium oxide spheres can be converted into highly uniform hollow zirconium titanium oxide spheres. By simply replacing hard template silica nanospheres with core-shell silica nanocomposites, the synthesis approach can be further used to prepare yolk-shell mesoporous structures through the coating and etching process. The approach is similar to the preparation of mesoporous silica nanocomposites from the self-assembly of the core, the soft template cetyltrimethylammonium bromide (CTAB) and a silica precursor and can be extended as a general method to coat mesoporous zirconium titanium oxide on other commonly used hard templates (e.g., mesoporous silica spheres, mesoporous organosilica ellipsoids, polymer spheres, and carbon nanospheres). The presence of highly permeable mesoporous channels in the zirconium titanium oxide shells has been demonstrated by the reduction of 4-nitrophenol with yolk-shell Au@mesoporous zirconium titanium oxide as the catalyst. Moreover, a cascade catalytic reaction including an acid catalyzed step and a catalytic hydrogenation to afford benzimidazole derivatives can be carried out very effectively by using the accessible acidity of the yolk-shell structured mesoporous zirconium titanium oxide spheres containing a Pd core as a bifunctional catalyst, which mak展开更多
In this study, the developments in modeling gas-phase catalyzed olefin polymerization fluidized-bed reactors (FBR) using Ziegler-Natta catalyst is presented. The modified mathematical model to account for mass and h...In this study, the developments in modeling gas-phase catalyzed olefin polymerization fluidized-bed reactors (FBR) using Ziegler-Natta catalyst is presented. The modified mathematical model to account for mass and heat transfer between the solid particles and the surrounding gas in the emulsion phase is developed in this work to include site activation reaction. This model developed in the present study is subsequently compared with well-known models, namely, the bubble-growth, well-mixed and the constant bubble size models for porous and non porous catalyst. The results we obtained from the model was very close to the constant bubble size model, well-mixed model and bubble growth model at the beginning of the reaction but its overall behavior changed and is closer to the well-mixed model compared with the bubble growth model and constant bubble size model after half an hour of operation. Neural-network based predictive controller are implemented to control the system and compared with the conventional PID controller, giving acceptable results.展开更多
Hydrogen production by partial oxidation steam reforming of methanol over a Cu/ZnO/Al2 O3 catalyst has been paid more and more attention. The chemical equilibria involved in the methanol partial oxidation steam reform...Hydrogen production by partial oxidation steam reforming of methanol over a Cu/ZnO/Al2 O3 catalyst has been paid more and more attention. The chemical equilibria involved in the methanol partial oxidation steam reforming reaction network such as methanol partial oxidation, methanol steam reforming, decomposition of methanol and water-gas shift reaction have been examined over the ranges of temperature 473-1073 K under normal pressure. Based on the detailed kinetics of these reactions over a Cu/ZnO/Al2O3 catalyst, and from the basic concept of the effectiveness factor, the intraparticle diffusion limitations were taken into account. The effectiveness factors for each reaction along the bed length were calculated. Then important results were offered for the simulation of this reaction process.展开更多
基金Supported by the National Natural Science Foundation of China (No.60574047) and the Doctorate Foundation of the State Education Ministry of China (No.20050335018).
文摘Abstract Data-driven tools, such as principal component analysis (PCA) and independent component analysis (ICA) have been applied to different benchmarks as process monitoring methods. The difference between the two methods is that the components of PCA are still dependent while ICA has no orthogonality constraint and its latentvariables are independent. Process monitoring with PCA often supposes that process data or principal components is Gaussian distribution. However, this kind of constraint cannot be satisfied by several practical processes. To ex-tend the use of PCA, a nonparametric method is added to PCA to overcome the difficulty, and kernel density estimation (KDE) is rather a good choice. Though ICA is based on non-Gaussian distribution intormation, .KDE can help in the close monitoring of the data. Methods, such as PCA, ICA, PCA.with .KDE(KPCA), and ICA with KDE,(KICA), are demonstrated and. compared by applying them to a practical industnal Spheripol craft polypropylene catalyzer reactor instead of a laboratory emulator.
基金This work was supported by the National Natural Science Foundation of China (Grant Nos. 21171064 and 21071059).
文摘The design of hollow mesoporous nanostructures for cascade catalytic reactions can inject new vitality into the development of nanostructures. In this study, we report a versatile cooperative template-directed coating method for the synthesis of hollow and yolk-shell mesoporous zirconium titanium oxide nanospheres with varying compositions (ZrO2 content from 0 to 100%), high surface areas (465 m2·g-1) and uniform mesopores. In particular, the hexadecylamine (HDA) used in the coating procedure serves as a soft template for silica@mesostructured metal oxide core-shell nanosphere formation. By a facile solvothermal treatment route with an ammonia solution and calcination in air, the silica@mesostructured zirconium titanium oxide spheres can be converted into highly uniform hollow zirconium titanium oxide spheres. By simply replacing hard template silica nanospheres with core-shell silica nanocomposites, the synthesis approach can be further used to prepare yolk-shell mesoporous structures through the coating and etching process. The approach is similar to the preparation of mesoporous silica nanocomposites from the self-assembly of the core, the soft template cetyltrimethylammonium bromide (CTAB) and a silica precursor and can be extended as a general method to coat mesoporous zirconium titanium oxide on other commonly used hard templates (e.g., mesoporous silica spheres, mesoporous organosilica ellipsoids, polymer spheres, and carbon nanospheres). The presence of highly permeable mesoporous channels in the zirconium titanium oxide shells has been demonstrated by the reduction of 4-nitrophenol with yolk-shell Au@mesoporous zirconium titanium oxide as the catalyst. Moreover, a cascade catalytic reaction including an acid catalyzed step and a catalytic hydrogenation to afford benzimidazole derivatives can be carried out very effectively by using the accessible acidity of the yolk-shell structured mesoporous zirconium titanium oxide spheres containing a Pd core as a bifunctional catalyst, which mak
文摘In this study, the developments in modeling gas-phase catalyzed olefin polymerization fluidized-bed reactors (FBR) using Ziegler-Natta catalyst is presented. The modified mathematical model to account for mass and heat transfer between the solid particles and the surrounding gas in the emulsion phase is developed in this work to include site activation reaction. This model developed in the present study is subsequently compared with well-known models, namely, the bubble-growth, well-mixed and the constant bubble size models for porous and non porous catalyst. The results we obtained from the model was very close to the constant bubble size model, well-mixed model and bubble growth model at the beginning of the reaction but its overall behavior changed and is closer to the well-mixed model compared with the bubble growth model and constant bubble size model after half an hour of operation. Neural-network based predictive controller are implemented to control the system and compared with the conventional PID controller, giving acceptable results.
基金the grant of Post-Doc. Program, Kyungpook National University (1999).
文摘Hydrogen production by partial oxidation steam reforming of methanol over a Cu/ZnO/Al2 O3 catalyst has been paid more and more attention. The chemical equilibria involved in the methanol partial oxidation steam reforming reaction network such as methanol partial oxidation, methanol steam reforming, decomposition of methanol and water-gas shift reaction have been examined over the ranges of temperature 473-1073 K under normal pressure. Based on the detailed kinetics of these reactions over a Cu/ZnO/Al2O3 catalyst, and from the basic concept of the effectiveness factor, the intraparticle diffusion limitations were taken into account. The effectiveness factors for each reaction along the bed length were calculated. Then important results were offered for the simulation of this reaction process.