期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于卷积神经网络的细长路面病害检测方法 被引量:6
1
作者 许慧青 陈斌 +2 位作者 王敬飞 陈志毅 覃健 《计算机应用》 CSCD 北大核心 2022年第1期265-272,共8页
针对细长路面病害人工检测耗时长和当前检测方法精度不足的问题,依据病害的弱语义特性和异常几何属性,提出了能够精准定位和分类出病害的二阶段细长路面病害检测方法Epd RCNN。首先,针对细长路面病害的弱语义特性,提出了一种复用低层特... 针对细长路面病害人工检测耗时长和当前检测方法精度不足的问题,依据病害的弱语义特性和异常几何属性,提出了能够精准定位和分类出病害的二阶段细长路面病害检测方法Epd RCNN。首先,针对细长路面病害的弱语义特性,提出了一种复用低层特征并反复融合不同阶段特征的骨干网络;其次,在训练过程中,使用一种符合病害几何属性分布的锚框机制来生成高质量的正样本供网络训练;然后,在单一高分辨率特征图上预测病害包围框,并针对该特征图使用并行级联空洞卷积模块来提升其多尺度特征表达能力;最后,针对形状各异的候选区域,使用由可变形感兴趣区域池化(RoI Pooling)和空间注意力模块组成的候选区域特征改良模块来提取符合病害几何属性的候选区域特征。实验结果表明,所提方法在光照充足图像上的平均准确率均值(mAP)为0.907,在存在光照问题图像上的mAP为0.891,综合mAP为0.899,表明该方法具有良好的检测性能和对光照的鲁棒性。 展开更多
关键词 细长路面病害 卷积神经网络 包围框 几何属性 并行级联空洞卷积 候选区域特征 空间注意力
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部