期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于信息融合标注的实体及关系联合抽取方法
被引量:
7
1
作者
马建红
魏字默
陈亚萌
《计算机应用与软件》
北大核心
2021年第7期159-166,共8页
针对目前机器学习方法在化学领域的资源实体及关系抽取任务上召回率低以及高度依赖人工特征工程和领域知识的问题,提出一种基于实体信息及关系信息融合标注的联合抽取方法(Information Fusion Tagging-Joint Model,IFT-Joint)。该方法...
针对目前机器学习方法在化学领域的资源实体及关系抽取任务上召回率低以及高度依赖人工特征工程和领域知识的问题,提出一种基于实体信息及关系信息融合标注的联合抽取方法(Information Fusion Tagging-Joint Model,IFT-Joint)。该方法主要从以下两个方面改进:将联合抽取任务转化为序列标注问题,缓解联合抽取中重叠关系的问题;从序列标注的角度出发,提出一种基于BERT(Bidirectional Encoder Representations from Transformers)联合抽取模型。通过多组实验表明,在化学领域实体数据集上,IFT-Joint的召回率可达到75%以上,相比于所提到的其他方法效果提升明显,且具有良好的稳定性。
展开更多
关键词
信息融合
标注
联合抽取
序列
标注
重叠关系
BERT
下载PDF
职称材料
题名
基于信息融合标注的实体及关系联合抽取方法
被引量:
7
1
作者
马建红
魏字默
陈亚萌
机构
河北工业大学人工智能与数据科学学院
出处
《计算机应用与软件》
北大核心
2021年第7期159-166,共8页
基金
河北省科技厅创新软件设计及公共应用服务平台项目(15240118D)。
文摘
针对目前机器学习方法在化学领域的资源实体及关系抽取任务上召回率低以及高度依赖人工特征工程和领域知识的问题,提出一种基于实体信息及关系信息融合标注的联合抽取方法(Information Fusion Tagging-Joint Model,IFT-Joint)。该方法主要从以下两个方面改进:将联合抽取任务转化为序列标注问题,缓解联合抽取中重叠关系的问题;从序列标注的角度出发,提出一种基于BERT(Bidirectional Encoder Representations from Transformers)联合抽取模型。通过多组实验表明,在化学领域实体数据集上,IFT-Joint的召回率可达到75%以上,相比于所提到的其他方法效果提升明显,且具有良好的稳定性。
关键词
信息融合
标注
联合抽取
序列
标注
重叠关系
BERT
Keywords
Information fusion tagging
Joint extraction
Sequence labeling
Overlapping relations
BERT
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于信息融合标注的实体及关系联合抽取方法
马建红
魏字默
陈亚萌
《计算机应用与软件》
北大核心
2021
7
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部