We have established a set of laboratory measurements which is used for capturing element gammma spectrum. Standard captured gamma ray spectra for ten elements, including Si, Ca, Fe, are obtained using the measurements...We have established a set of laboratory measurements which is used for capturing element gammma spectrum. Standard captured gamma ray spectra for ten elements, including Si, Ca, Fe, are obtained using the measurements for the first time in China. We also simulated the capture gamma ray spectra of the ten elements using Monte Carlo methodology with the same parameters of our experimental measurements. Comparing the experiment and simulation results with the data from the International Atomic Energy Agency's Nuclear Data Center, we obtained the standard captured gamma ray spectra of the ten elements, which, as calibration spectra, are used to calibrate the raw spectrum in data processing. This method solved the key problem during the conversion from the original measuring spectrum to the yield of each element in the data processing. The method can effectively improve the accuracy of the element yield calculation.展开更多
复杂多变的火山岩地层矿物成分导致了火山岩地层的岩石骨架参数难以确定,储层气体的出现又导致了孔隙度计算的复杂性和不确定性。传统的岩石体积模型和多矿物模型孔隙度计算方法在岩性复杂、含气火山岩储层存在局限性。基于岩石骨架参...复杂多变的火山岩地层矿物成分导致了火山岩地层的岩石骨架参数难以确定,储层气体的出现又导致了孔隙度计算的复杂性和不确定性。传统的岩石体积模型和多矿物模型孔隙度计算方法在岩性复杂、含气火山岩储层存在局限性。基于岩石骨架参数是岩石的化学成分和原子排列的函数的理论,对研究区的岩心进行了矿物和化学成分MINCAP(Mineralogy and Chemical Analysis Project)分析,建立了利用元素俘获能谱测井资料直接计算火山岩岩石测井密度骨架曲线和测井中子骨架曲线的关系式。在岩石骨架参数确定的基础上,利用DMRP(Density-Magnetic Resonance Program)方法,同时衍生了定性判断储层含气性的方法。利用测井资料计算地层连续深度的测井骨架参数是火山岩地层孔隙度计算的首例,后续井的岩心分析资料和测井资料证实了该方法的可行性和可靠性。该方法在酸性火山岩地层应用效果最好。局限性在于用于MINCAP分析的岩心数量少,且用于MINCAP分析的岩石类型主要以酸性火山岩为主,该方法对其他复杂岩性储层孔隙度的计算具有借鉴性。展开更多
In this study,the gamma-ray spectrum of single elemental capture spectrum log was simulated.By numerical simulation we obtain a single-element neutron capture gamma spectrum.The neutron and photon transportable proces...In this study,the gamma-ray spectrum of single elemental capture spectrum log was simulated.By numerical simulation we obtain a single-element neutron capture gamma spectrum.The neutron and photon transportable processes were simulated using the Monte Carlo N-Particle Transport Code System(MCNP),where an Am–Be neutron source generated the neutrons and thermal neutron capture reactions with the stratigraphic elements.The characteristic gamma rays and the standard gamma spectra were recorded,from analyzing of the characteristic spectra analysis we obtain the ten elements in the stratum,such as Si,Ca,Fe,S,Ti,Al,K,Na,Cl,and Ba.Comparing with single elemental capture gamma spectrum of Schlumberger,the simulated characteristic peak and the spectral change results are in good agreement with Schlumberger.The characteristic peak positions observed also consistent with the data obtained from the National Nuclear Data Center of the International Atomic Energy Agency.The neutron gamma spectrum results calculated using this simple method have practical applications.They also serve as an reference for data processing using other types of element logging tools.展开更多
基金sponsored by the National S&T Major Special Project(No. 2011ZX05020-008)
文摘We have established a set of laboratory measurements which is used for capturing element gammma spectrum. Standard captured gamma ray spectra for ten elements, including Si, Ca, Fe, are obtained using the measurements for the first time in China. We also simulated the capture gamma ray spectra of the ten elements using Monte Carlo methodology with the same parameters of our experimental measurements. Comparing the experiment and simulation results with the data from the International Atomic Energy Agency's Nuclear Data Center, we obtained the standard captured gamma ray spectra of the ten elements, which, as calibration spectra, are used to calibrate the raw spectrum in data processing. This method solved the key problem during the conversion from the original measuring spectrum to the yield of each element in the data processing. The method can effectively improve the accuracy of the element yield calculation.
文摘复杂多变的火山岩地层矿物成分导致了火山岩地层的岩石骨架参数难以确定,储层气体的出现又导致了孔隙度计算的复杂性和不确定性。传统的岩石体积模型和多矿物模型孔隙度计算方法在岩性复杂、含气火山岩储层存在局限性。基于岩石骨架参数是岩石的化学成分和原子排列的函数的理论,对研究区的岩心进行了矿物和化学成分MINCAP(Mineralogy and Chemical Analysis Project)分析,建立了利用元素俘获能谱测井资料直接计算火山岩岩石测井密度骨架曲线和测井中子骨架曲线的关系式。在岩石骨架参数确定的基础上,利用DMRP(Density-Magnetic Resonance Program)方法,同时衍生了定性判断储层含气性的方法。利用测井资料计算地层连续深度的测井骨架参数是火山岩地层孔隙度计算的首例,后续井的岩心分析资料和测井资料证实了该方法的可行性和可靠性。该方法在酸性火山岩地层应用效果最好。局限性在于用于MINCAP分析的岩心数量少,且用于MINCAP分析的岩石类型主要以酸性火山岩为主,该方法对其他复杂岩性储层孔隙度的计算具有借鉴性。
基金supported by The National S&T Major Special Project(No.2011ZX05020-008)
文摘In this study,the gamma-ray spectrum of single elemental capture spectrum log was simulated.By numerical simulation we obtain a single-element neutron capture gamma spectrum.The neutron and photon transportable processes were simulated using the Monte Carlo N-Particle Transport Code System(MCNP),where an Am–Be neutron source generated the neutrons and thermal neutron capture reactions with the stratigraphic elements.The characteristic gamma rays and the standard gamma spectra were recorded,from analyzing of the characteristic spectra analysis we obtain the ten elements in the stratum,such as Si,Ca,Fe,S,Ti,Al,K,Na,Cl,and Ba.Comparing with single elemental capture gamma spectrum of Schlumberger,the simulated characteristic peak and the spectral change results are in good agreement with Schlumberger.The characteristic peak positions observed also consistent with the data obtained from the National Nuclear Data Center of the International Atomic Energy Agency.The neutron gamma spectrum results calculated using this simple method have practical applications.They also serve as an reference for data processing using other types of element logging tools.