期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
物理先验指导的神经微分方程模型
1
作者 陈昊炜 郭宇 +2 位作者 袁兆麟 王宝杰 班晓娟 《北京邮电大学学报》 EI CAS CSCD 北大核心 2024年第4期90-97,共8页
流程工业中涉及多个复杂设备的耦合,独立设备模型无法有效指导实际生产;纯数据驱动模型常因面临分布外泛化问题,难以体现良好的数据效率和泛化能力。对此,针对浮选这一典型的流程工业系统,提出了一种物理先验指导的神经微分方程模型,该... 流程工业中涉及多个复杂设备的耦合,独立设备模型无法有效指导实际生产;纯数据驱动模型常因面临分布外泛化问题,难以体现良好的数据效率和泛化能力。对此,针对浮选这一典型的流程工业系统,提出了一种物理先验指导的神经微分方程模型,该模型考虑设备间耦合关系和全局特征,利用物理先验对神经微分方程进行重构,以建模可感知环境的单智能体。所提模型由序列编码器、插值模块、神经微分方程预测模块和状态解码器构成,并基于物理先验设计了神经微分方程的梯度网络计算图结构。将多智能体模型按照实际工序拓扑建立不同体系,可以实现浮选全流程的长时液位预测,并作为在线仿真环境协助实现多智能体协同控制。使用从浮选厂采集的工业数据集对该模型进行了验证,结果表明,与离散时间模型和未借助物理信息重构梯度网络的基线模型相比,所提模型具有更优的数据效率和泛化能力。 展开更多
关键词 流程工业 体系化系统建模 神经常微分方程 理论引导的模型重构
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部