设计了以增强型AB跟随器作为缓冲级的带瞬态增强电路的线性稳压器(LDO)。在保证LDO环路稳定性的同时,将增强型AB跟随器的偏置电流改为动态偏置电流,同时加入瞬态增强电路来改善系统重载到轻载来回跳变时的瞬态性能。仿真结果表明,该稳...设计了以增强型AB跟随器作为缓冲级的带瞬态增强电路的线性稳压器(LDO)。在保证LDO环路稳定性的同时,将增强型AB跟随器的偏置电流改为动态偏置电流,同时加入瞬态增强电路来改善系统重载到轻载来回跳变时的瞬态性能。仿真结果表明,该稳压器输入电压2.7~5 V,输出电压2.5 V,压差200 m V,电路空载时静态电流18μA,最大负载电流100 m A;在输出电容为100 pF时,负载电流以99×10^(–3)A/μs跳变,输出电压下冲和过冲分别为89 m V和110 m V,均在1.5μs内恢复稳定。展开更多
电压基准是LDO线性稳压器的核心部分,它的精度直接影响到输出电压的精度。本文针对低功耗LDO线性稳压器一方面有较低的静态电流的要求,另一方面又有较高的精度要求,提出了一种简单实用的电压基准电路。本电路采用TSMC 0.18μm混合信号C...电压基准是LDO线性稳压器的核心部分,它的精度直接影响到输出电压的精度。本文针对低功耗LDO线性稳压器一方面有较低的静态电流的要求,另一方面又有较高的精度要求,提出了一种简单实用的电压基准电路。本电路采用TSMC 0.18μm混合信号CMOS工艺,仿真结果显示,输出基准电压为1.213 V,静态电流为538 n A,在-55~125℃温度范围内,温度系数仅为10.58 ppm/℃,低频时的电源抑制比为-85 d B。展开更多
在此设计一个具有560 n A静态电流、150 m A驱动能力的低压差线性稳压器。该LDO采用TSMC 0.18μm混合信号CMOS工艺,输出电压是3.3 V,输入电压为3.5~5 V。低静态电流LDO电路的设计难点是频率补偿和瞬态响应,这里通过引入一个带有负反馈...在此设计一个具有560 n A静态电流、150 m A驱动能力的低压差线性稳压器。该LDO采用TSMC 0.18μm混合信号CMOS工艺,输出电压是3.3 V,输入电压为3.5~5 V。低静态电流LDO电路的设计难点是频率补偿和瞬态响应,这里通过引入一个带有负反馈的动态偏置缓冲器,不仅保证了系统在空载到满载整个负载范围内的稳定性,还极大地改善了低静态电流LDO的瞬态响应问题。仿真结果表明,全负载范围内相位裕度最小为65.8°,同时最大的瞬态响应偏差小于10 m V。展开更多
文摘设计了以增强型AB跟随器作为缓冲级的带瞬态增强电路的线性稳压器(LDO)。在保证LDO环路稳定性的同时,将增强型AB跟随器的偏置电流改为动态偏置电流,同时加入瞬态增强电路来改善系统重载到轻载来回跳变时的瞬态性能。仿真结果表明,该稳压器输入电压2.7~5 V,输出电压2.5 V,压差200 m V,电路空载时静态电流18μA,最大负载电流100 m A;在输出电容为100 pF时,负载电流以99×10^(–3)A/μs跳变,输出电压下冲和过冲分别为89 m V和110 m V,均在1.5μs内恢复稳定。
文摘提出了一种集成于射频芯片的低噪声、快速建立的低压差线性稳压器(LDO)。分析了传统LDO的主要噪声源,在综合考虑芯片的噪声、静态电流和面积后,采用超低频低通滤波器,对LDO的输出噪声进行优化。基于SMIC 0.18μm工艺,采用Cadence软件对电路进行仿真。结果表明,10 Hz到100 k Hz之间的输出积分噪声电压为17μV,建立时间小于18μs,总静态电流为24μA,满足LDO的应用要求。
文摘电压基准是LDO线性稳压器的核心部分,它的精度直接影响到输出电压的精度。本文针对低功耗LDO线性稳压器一方面有较低的静态电流的要求,另一方面又有较高的精度要求,提出了一种简单实用的电压基准电路。本电路采用TSMC 0.18μm混合信号CMOS工艺,仿真结果显示,输出基准电压为1.213 V,静态电流为538 n A,在-55~125℃温度范围内,温度系数仅为10.58 ppm/℃,低频时的电源抑制比为-85 d B。
文摘在此设计一个具有560 n A静态电流、150 m A驱动能力的低压差线性稳压器。该LDO采用TSMC 0.18μm混合信号CMOS工艺,输出电压是3.3 V,输入电压为3.5~5 V。低静态电流LDO电路的设计难点是频率补偿和瞬态响应,这里通过引入一个带有负反馈的动态偏置缓冲器,不仅保证了系统在空载到满载整个负载范围内的稳定性,还极大地改善了低静态电流LDO的瞬态响应问题。仿真结果表明,全负载范围内相位裕度最小为65.8°,同时最大的瞬态响应偏差小于10 m V。