图节点的低维嵌入在各种预测任务中是非常有用的,如蛋白质功能预测、内容推荐等。然而,多数方法不能自然推广到不可见节点。图采样聚合算法(Graph Sample and Aggregate,Graphsage)虽然可以提高不可见节点生成嵌入的速度,但容易引入噪...图节点的低维嵌入在各种预测任务中是非常有用的,如蛋白质功能预测、内容推荐等。然而,多数方法不能自然推广到不可见节点。图采样聚合算法(Graph Sample and Aggregate,Graphsage)虽然可以提高不可见节点生成嵌入的速度,但容易引入噪声数据,且生成的节点嵌入的表示能力不高。为此,文中提出了一种基于KNN与矩阵变换的图节点嵌入归纳式学习算法。首先,通过KNN选取K个邻节点;然后,根据聚合函数生成聚合信息;最后,利用矩阵变换与全连接层对聚合信息和节点信息进行计算,得到新的节点嵌入。为了有效权衡计算时间与性能,文中提出一种新的聚合函数,对邻节点特征运用最大池化作为聚合信息输出,以更多地保留邻节点信息,降低计算代价。在reddit和PPI两个数据集上的实验表明,所提算法在micro-f1和macro-f1两个评价指标上分别获得了4.995%与10.515%的提升。因此,该算法可以大幅减少噪声数据,提高节点嵌入的表示能力,快速有效地为不可见节点及不可见图生成节点嵌入。展开更多
基于快速序列视觉呈现(rapid serial visual presentation,RSVP)范式的目标图像检索借助于人脑在看到目标图像时产生的事件相关电位(event-related potentials,ERP)来完成复杂目标图像检索。在应用RSVP范式进行复杂目标图像检索时存在...基于快速序列视觉呈现(rapid serial visual presentation,RSVP)范式的目标图像检索借助于人脑在看到目标图像时产生的事件相关电位(event-related potentials,ERP)来完成复杂目标图像检索。在应用RSVP范式进行复杂目标图像检索时存在跨时段甚至跨被试的问题。对此,本文提出了一种面向跨被试RSVP的多特征低维子空间嵌入的ERP检测方法,首先采用迁移学习方法中的欧式空间对齐对不同被试的数据进行对齐,其次将来自不同空间的特征分别进行有监督降维、重构。最终采用留一被试法作为检验方法、平衡准确率作为评价指标,在PhysioNetRSVP数据集以及清华RSVP数据集下共计14个长度分段中,有12个长度分段达到最优分类结果。结果表明本文提出的多特征低维子空间嵌入方法能够有效提升ERP检测时的稳定性。展开更多
文摘图节点的低维嵌入在各种预测任务中是非常有用的,如蛋白质功能预测、内容推荐等。然而,多数方法不能自然推广到不可见节点。图采样聚合算法(Graph Sample and Aggregate,Graphsage)虽然可以提高不可见节点生成嵌入的速度,但容易引入噪声数据,且生成的节点嵌入的表示能力不高。为此,文中提出了一种基于KNN与矩阵变换的图节点嵌入归纳式学习算法。首先,通过KNN选取K个邻节点;然后,根据聚合函数生成聚合信息;最后,利用矩阵变换与全连接层对聚合信息和节点信息进行计算,得到新的节点嵌入。为了有效权衡计算时间与性能,文中提出一种新的聚合函数,对邻节点特征运用最大池化作为聚合信息输出,以更多地保留邻节点信息,降低计算代价。在reddit和PPI两个数据集上的实验表明,所提算法在micro-f1和macro-f1两个评价指标上分别获得了4.995%与10.515%的提升。因此,该算法可以大幅减少噪声数据,提高节点嵌入的表示能力,快速有效地为不可见节点及不可见图生成节点嵌入。
文摘基于快速序列视觉呈现(rapid serial visual presentation,RSVP)范式的目标图像检索借助于人脑在看到目标图像时产生的事件相关电位(event-related potentials,ERP)来完成复杂目标图像检索。在应用RSVP范式进行复杂目标图像检索时存在跨时段甚至跨被试的问题。对此,本文提出了一种面向跨被试RSVP的多特征低维子空间嵌入的ERP检测方法,首先采用迁移学习方法中的欧式空间对齐对不同被试的数据进行对齐,其次将来自不同空间的特征分别进行有监督降维、重构。最终采用留一被试法作为检验方法、平衡准确率作为评价指标,在PhysioNetRSVP数据集以及清华RSVP数据集下共计14个长度分段中,有12个长度分段达到最优分类结果。结果表明本文提出的多特征低维子空间嵌入方法能够有效提升ERP检测时的稳定性。