低约束试件断裂韧性测试对油气管道安全运营具有重要意义。本文回顾了低约束试件断裂韧性测试方法及发展过程,介绍了裂纹尖端张开位移(crack tip opening displacement,CTOD)和J积分等常用断裂韧性表征参数,并对断裂韧性测试中应力强度...低约束试件断裂韧性测试对油气管道安全运营具有重要意义。本文回顾了低约束试件断裂韧性测试方法及发展过程,介绍了裂纹尖端张开位移(crack tip opening displacement,CTOD)和J积分等常用断裂韧性表征参数,并对断裂韧性测试中应力强度因子、J积分塑性因子、J积分与CTOD转换因子、裂纹尺寸测量方法、数字图像相关方法等关键问题进行对比分析,总结需要深入研究的问题,为低约束试件断裂韧性测试发展提供一定依据。展开更多
In this study, the undrained behaviour of silt under low stress level is studied. An effective preparation method for built-in silt samples in the triaxial test was firstly developed. By triaxial testing of samples at...In this study, the undrained behaviour of silt under low stress level is studied. An effective preparation method for built-in silt samples in the triaxial test was firstly developed. By triaxial testing of samples at low confining pressures it was found that silt easily loses stability and liquefies. Loose silt may show temporary liquefaction under static loading, and develop full liquefaction under cyclic loading. The most important factors influencing the silt behaviour are porosity, confining pressure, consolidation state, cyclic loading level and number of cycles. The maximum obtainable shear stress is primarily a function of the confining pressure and the internal frictional angle. The actual structure of the silt material is the key factor in controlling its behaviour.展开更多
文摘低约束试件断裂韧性测试对油气管道安全运营具有重要意义。本文回顾了低约束试件断裂韧性测试方法及发展过程,介绍了裂纹尖端张开位移(crack tip opening displacement,CTOD)和J积分等常用断裂韧性表征参数,并对断裂韧性测试中应力强度因子、J积分塑性因子、J积分与CTOD转换因子、裂纹尺寸测量方法、数字图像相关方法等关键问题进行对比分析,总结需要深入研究的问题,为低约束试件断裂韧性测试发展提供一定依据。
基金This research is partly supported by the National Natural Science Foundation(No.50009002)863(No.2001AA616020)projects.
文摘In this study, the undrained behaviour of silt under low stress level is studied. An effective preparation method for built-in silt samples in the triaxial test was firstly developed. By triaxial testing of samples at low confining pressures it was found that silt easily loses stability and liquefies. Loose silt may show temporary liquefaction under static loading, and develop full liquefaction under cyclic loading. The most important factors influencing the silt behaviour are porosity, confining pressure, consolidation state, cyclic loading level and number of cycles. The maximum obtainable shear stress is primarily a function of the confining pressure and the internal frictional angle. The actual structure of the silt material is the key factor in controlling its behaviour.