期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于边缘智能计算的城市交通感知数据自适应恢复 被引量:4
1
作者 向朝参 程文辉 +4 位作者 张昭 焦贤龙 屈毓锛 陈超 戴海鹏 《计算机研究与发展》 EI CSCD 北大核心 2023年第3期619-634,共16页
智能交通系统(intelligent transportation systems,ITSs)被广泛用于智慧城市中,却普遍存在感知数据缺失问题.而交通感知站点有限的存储计算能力严重制约感知数据的恢复,极大影响ITSs的正常使用.虽然可以利用边缘节点强大的存储计算能... 智能交通系统(intelligent transportation systems,ITSs)被广泛用于智慧城市中,却普遍存在感知数据缺失问题.而交通感知站点有限的存储计算能力严重制约感知数据的恢复,极大影响ITSs的正常使用.虽然可以利用边缘节点强大的存储计算能力解决这个困境,但边缘节点部署的高复杂性和感知数据时空相关性的高动态性对数据精确恢复提出挑战.为了解决上述挑战,提出基于边缘智能计算的城市交通感知数据自适应恢复系统.具体地,首先利用子模优化理论,提出具有理论下界的边缘节点次优部署分配算法.然后,基于低秩理论恢复感知数据,并基于恢复结果估计非缺失下限,通过反馈自适应调整感知站点的数据上传比例,从而保证数据精确恢复.最后,基于澳大利亚600个交通站点1年的感知数据构建原型系统,对所提算法进行评估.实验结果表明,所提算法的边缘节点部署性能达到最优性能的90%以上,缺失数据恢复精度比3种对比方法提高43.8%以上.同时,自适应数据恢复能够平均提高精度40.3%. 展开更多
关键词 边缘智能计算 智能交通系统 边缘节点部署 感知数据恢复 子模理论 理论
下载PDF
滤除图像中混合噪声的LSE模型 被引量:5
2
作者 袁珍 林相波 王新宁 《信号处理》 CSCD 北大核心 2013年第10期1329-1335,共7页
图像中的高斯白噪声使LS模型中的低秩矩阵低秩性和稀疏矩阵稀疏性不能同时满足,造成去噪不充分或细节严重丢失。本文在LS模型的基础上引入高斯噪声约束项,提出一种新的用于去除图像中混合噪声的LSE模型,该模型首先对图像进行相似块匹配... 图像中的高斯白噪声使LS模型中的低秩矩阵低秩性和稀疏矩阵稀疏性不能同时满足,造成去噪不充分或细节严重丢失。本文在LS模型的基础上引入高斯噪声约束项,提出一种新的用于去除图像中混合噪声的LSE模型,该模型首先对图像进行相似块匹配,然后对得到的相似块低秩逼近得到去噪图像。实验结果表明,与LS模型相比,LSE模型在保证去噪效果的同时,保留了图像的细节信息,具有更佳的视觉效果,去噪图像的信噪比提高了约0.1-2dB;与BM3D相比,在高斯噪声较小的情况下信噪比提高了约0.5-2.5dB。 展开更多
关键词 块匹配 理论 增广拉格朗日算法
下载PDF
加权截断p范数在运动目标检测中的应用 被引量:1
3
作者 宣晓 余勤 《计算机工程》 CAS CSCD 北大核心 2018年第6期233-238,248,共7页
在基于稀疏低秩分解的运动目标检测方法中,由于核范数并非为矩阵的秩函数最佳近似,未考虑到运动目标的空间连续性,在动态背景干扰的情况下,运动目标检测的效果不理想。针对上述问题,提出加权截断p范数分析模型。该模型将观测视频分为静... 在基于稀疏低秩分解的运动目标检测方法中,由于核范数并非为矩阵的秩函数最佳近似,未考虑到运动目标的空间连续性,在动态背景干扰的情况下,运动目标检测的效果不理想。针对上述问题,提出加权截断p范数分析模型。该模型将观测视频分为静态背景、运动目标与动态背景3个部分,静态背景采用改进的非凸范数,即加权截断p范数进行低秩约束,根据动态背景与运动目标具有空间连续性的特点,分别使用l_(2,1)范数进行结构性稀疏约束。实验结果表明,与鲁棒主成分分析模型、截断核范数模型、加权核范数模型以及相邻离群点低秩模型相比,该模型可有效去除动态背景扰动,并能提取到更精确的运动目标。 展开更多
关键词 背景建模 运动目标提取 稀疏与理论 加权截断p范数 结构性稀疏范数
下载PDF
RSS室内定位信号经验模型重构研究 被引量:2
4
作者 薛卫星 花向红 +1 位作者 李清泉 邱卫宁 《测绘工程》 CSCD 2019年第1期36-41,46,共7页
介绍低秩矩阵填充理论,结合RSS室内信号图的特点,借鉴地形图中的地物特征点概念,提出RSS欧氏空间信号特征点概念;提出RSS室内定位信号经验模型的具体重构算法和流程。最后,分析RSS几何空间特征点构建指纹库的精度分析和RSS欧氏空间信号... 介绍低秩矩阵填充理论,结合RSS室内信号图的特点,借鉴地形图中的地物特征点概念,提出RSS欧氏空间信号特征点概念;提出RSS室内定位信号经验模型的具体重构算法和流程。最后,分析RSS几何空间特征点构建指纹库的精度分析和RSS欧氏空间信号特征点信号模型重构的精度分析,对不同类型的特征点赋予不同的权值,并将这些特征点用在RSS室内定位信号经验模型的重构中。实验结果表明,在数据采样量略高于位置指纹(约为1.37倍)的情况下,利用RSS室内定位信号经验模型的定位精度显著高于位置指纹的定位精度(约为2倍),特别是0.5m以内的定位精度。 展开更多
关键词 室内导航定位 矩阵填充理论 RSS室内定位信号经验模型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部