为提高迷彩伪装图案的设计效率和环境适应性,利用背景拼接与纹理模板融合进行迷彩伪装图案的全自动化设计。通过将输入的若干背景图像自动组合为单张拼接图像,采用均值聚类法提取出背景拼接图像的主色;提出4种迷彩纹理模板自动设计方法...为提高迷彩伪装图案的设计效率和环境适应性,利用背景拼接与纹理模板融合进行迷彩伪装图案的全自动化设计。通过将输入的若干背景图像自动组合为单张拼接图像,采用均值聚类法提取出背景拼接图像的主色;提出4种迷彩纹理模板自动设计方法(多圆形随机分布法、WGN傅里叶频谱法、肌理图像生成法及分层云彩法),再对所得迷彩纹理模板进行色彩聚类与色彩替换,得到最终的迷彩伪装图案。为验证设计的有效性,针对丛林虚拟场景自动生成了4种伪装图案,并进行了伪装效果的主观和客观评价。结果表明,上述方法仅需17.0~71.0 s即可完成针对目标背景的迷彩图案设计,且最优方案为基于多圆形随机分布法纹理模板的迷彩图案;本文方法相对于普通迷彩伪装,其主观评价搜索时间增加了8.1%,基于Positioning and Focus Network(PF-Net)模型的客观评价发现概率降低了45%。展开更多
目的伪装目标是目标检测领域一类重要研究对象,由于目标与背景融合度较高、视觉边缘性较差、特征信息不足,常规目标检测算法容易出现漏警、虚警,且检测精度不高。针对伪装目标检测的难点,基于YOLOv5(you only look once)算法提出了一种...目的伪装目标是目标检测领域一类重要研究对象,由于目标与背景融合度较高、视觉边缘性较差、特征信息不足,常规目标检测算法容易出现漏警、虚警,且检测精度不高。针对伪装目标检测的难点,基于YOLOv5(you only look once)算法提出了一种基于多检测层与自适应权重的伪装目标检测算法(algorithm for detecting camouflage targets based on multi-detection layers and adaptive weight,MAH-YOLOv5)。方法在网络预测头部中增加一个非显著目标检测层,提升网络对于像素占比极低、语义信息不足这类目标的感知能力;在特征提取骨干中融合注意力机制,调节卷积网络对特征信息不足目标的权重配比,使其更关注待检测的伪装目标;在网络训练过程中使用多尺度训练策略,进一步提升模型鲁棒性与泛化能力;定义了用于军事目标检测领域的漏警、虚警指标,并提出伪装目标综合检测指数。结果实验在课题组采集的伪装数据集上进行训练和验证。结果表明,本文方法在自制数据集上的平均精度均值(mean average precision,mAP)达到76.64%,较YOLOv5算法提升3.89%;漏检率8.53%、虚警率仅有0.14%,较YOLOv5算法分别降低2.75%、0.56%;伪装目标综合检测能力指数高达88.17%。与其他对比算法相比,本文方法的综合检测能力指数仅次于最先进的YOLOv8等算法。结论本文方法在识别精度、漏检率等指标上均有较大改善,具有最优的综合检测能力,可为战场伪装目标的快速高精度检测识别提供技术支撑和借鉴参考。展开更多
文摘为提高迷彩伪装图案的设计效率和环境适应性,利用背景拼接与纹理模板融合进行迷彩伪装图案的全自动化设计。通过将输入的若干背景图像自动组合为单张拼接图像,采用均值聚类法提取出背景拼接图像的主色;提出4种迷彩纹理模板自动设计方法(多圆形随机分布法、WGN傅里叶频谱法、肌理图像生成法及分层云彩法),再对所得迷彩纹理模板进行色彩聚类与色彩替换,得到最终的迷彩伪装图案。为验证设计的有效性,针对丛林虚拟场景自动生成了4种伪装图案,并进行了伪装效果的主观和客观评价。结果表明,上述方法仅需17.0~71.0 s即可完成针对目标背景的迷彩图案设计,且最优方案为基于多圆形随机分布法纹理模板的迷彩图案;本文方法相对于普通迷彩伪装,其主观评价搜索时间增加了8.1%,基于Positioning and Focus Network(PF-Net)模型的客观评价发现概率降低了45%。
文摘目的伪装目标是目标检测领域一类重要研究对象,由于目标与背景融合度较高、视觉边缘性较差、特征信息不足,常规目标检测算法容易出现漏警、虚警,且检测精度不高。针对伪装目标检测的难点,基于YOLOv5(you only look once)算法提出了一种基于多检测层与自适应权重的伪装目标检测算法(algorithm for detecting camouflage targets based on multi-detection layers and adaptive weight,MAH-YOLOv5)。方法在网络预测头部中增加一个非显著目标检测层,提升网络对于像素占比极低、语义信息不足这类目标的感知能力;在特征提取骨干中融合注意力机制,调节卷积网络对特征信息不足目标的权重配比,使其更关注待检测的伪装目标;在网络训练过程中使用多尺度训练策略,进一步提升模型鲁棒性与泛化能力;定义了用于军事目标检测领域的漏警、虚警指标,并提出伪装目标综合检测指数。结果实验在课题组采集的伪装数据集上进行训练和验证。结果表明,本文方法在自制数据集上的平均精度均值(mean average precision,mAP)达到76.64%,较YOLOv5算法提升3.89%;漏检率8.53%、虚警率仅有0.14%,较YOLOv5算法分别降低2.75%、0.56%;伪装目标综合检测能力指数高达88.17%。与其他对比算法相比,本文方法的综合检测能力指数仅次于最先进的YOLOv8等算法。结论本文方法在识别精度、漏检率等指标上均有较大改善,具有最优的综合检测能力,可为战场伪装目标的快速高精度检测识别提供技术支撑和借鉴参考。