传统模式下,卫星采取单任务观测方式,该种方式下任务的成像精度高但任务成像数量少且资源使用率极低。因此,在单任务观测方式的基础上设计了一种多任务合成机制(multi-task merging mechanism,MTMM),在保证用户最低成像要求的情况下对...传统模式下,卫星采取单任务观测方式,该种方式下任务的成像精度高但任务成像数量少且资源使用率极低。因此,在单任务观测方式的基础上设计了一种多任务合成机制(multi-task merging mechanism,MTMM),在保证用户最低成像要求的情况下对任务合成。首先,基于合成任务集,建立多星调度模型。然后,针对模型提出了基于任务合成的改进蚁群优化(improved ant colony optimization based on task merging,IACO-TM)算法,在算法中设计了自适应蚁窗策略、强制扰动机制以及算法参数动态调节策略,对蚂蚁搜索空间进行有效裁剪,避免算法陷入局部最优的同时提高算法的收敛速度。最后,通过大量仿真实验与不考虑任务合成的改进蚁群优化(improved ant colony optimization,IACO)算法和基于任务合成的传统蚁群优化(traditional ant colony optimization based on task merging,TACO-TM)算法对比,验证了所提MTMM和IACO-TM的有效性。展开更多
文摘传统模式下,卫星采取单任务观测方式,该种方式下任务的成像精度高但任务成像数量少且资源使用率极低。因此,在单任务观测方式的基础上设计了一种多任务合成机制(multi-task merging mechanism,MTMM),在保证用户最低成像要求的情况下对任务合成。首先,基于合成任务集,建立多星调度模型。然后,针对模型提出了基于任务合成的改进蚁群优化(improved ant colony optimization based on task merging,IACO-TM)算法,在算法中设计了自适应蚁窗策略、强制扰动机制以及算法参数动态调节策略,对蚂蚁搜索空间进行有效裁剪,避免算法陷入局部最优的同时提高算法的收敛速度。最后,通过大量仿真实验与不考虑任务合成的改进蚁群优化(improved ant colony optimization,IACO)算法和基于任务合成的传统蚁群优化(traditional ant colony optimization based on task merging,TACO-TM)算法对比,验证了所提MTMM和IACO-TM的有效性。