目的 多视角立体重建方法是3维视觉技术中的重要部分。相较于传统方法,基于深度学习的方法大幅减少重建所需时间,同时在重建完整性上也有所提升。然而,现有方法的特征提取效果一般和代价体之间的关联性较差,使得重建结果仍有可以提升的...目的 多视角立体重建方法是3维视觉技术中的重要部分。相较于传统方法,基于深度学习的方法大幅减少重建所需时间,同时在重建完整性上也有所提升。然而,现有方法的特征提取效果一般和代价体之间的关联性较差,使得重建结果仍有可以提升的空间。针对以上问题,本文提出了一种双U-Net特征提取的多尺度代价体信息共享的多视角立体重建网络模型。方法 为了获得输入图像更加完整和准确的特征信息,设计了一个双U-Net特征提取模块,同时按照3个不同尺度构成由粗到细的级联结构输出特征;在代价体正则化阶段,设计了一个多尺度代价体信息共享的预处理模块,对小尺度代价体内的信息进行分离并传给下层代价体进行融合,由粗到细地进行深度图估计,使重建精度和完整度有大幅提升。结果 实验在DTU(Technical University of Denmark)数据集上与CasMVSNet相比,在准确度误差、完整度误差和整体性误差3个主要指标上分别提升约16.2%,6.5%和11.5%,相较于其他基于深度学习的方法更是有大幅度提升,并且在其他几个次要指标上也均有不同程度的提升。结论 提出的双U-Net提取多尺度代价体信息共享的多视角立体重建网络在特征提取和代价体正则化阶段均取得了效果,在重建精度上相比于原模型和其他方法都有一定的提升,验证了该方法的真实有效。展开更多
目的针对多视图立体(multi-view stereo,MVS)重建效果整体性不理想的问题,本文对MVS 3D重建中的特征提取模块和代价体正则化模块进行研究,提出一种基于注意力机制的端到端深度学习架构。方法首先从输入的源图像和参考图像中提取深度特征...目的针对多视图立体(multi-view stereo,MVS)重建效果整体性不理想的问题,本文对MVS 3D重建中的特征提取模块和代价体正则化模块进行研究,提出一种基于注意力机制的端到端深度学习架构。方法首先从输入的源图像和参考图像中提取深度特征,在每一级特征提取模块中均加入注意力层,以捕获深度推理任务的远程依赖关系;然后通过可微分单应性变换构建参考视锥的特征量,并构建代价体;最后利用多层U-Net体系结构正则化代价体,并通过回归结合参考图像边缘信息生成最终的细化深度图。结果在DTU(Technical University of Denmark)数据集上进行测试,与现有的几种方法相比,本文方法相较于Colmap、Gipuma和Tola方法,整体性指标分别提高8.5%、13.1%和31.9%,完整性指标分别提高20.7%、41.6%和73.3%;相较于Camp、Furu和Surface Net方法,整体性指标分别提高24.8%、33%和29.8%,准确性指标分别提高39.8%、17.6%和1.3%,完整性指标分别提高9.7%、48.4%和58.3%;相较于Pru Mvsnet方法,整体性指标提高1.7%,准确性指标提高5.8%;相较于Mvsnet方法,整体性指标提高1.5%,完整性标提高7%。结论在DTU数据集上的测试结果表明,本文提出的网络架构在整体性指标上得到了目前最优的结果,完整性和准确性指标得到较大提升,3D重建质量更好。展开更多
文摘目的 多视角立体重建方法是3维视觉技术中的重要部分。相较于传统方法,基于深度学习的方法大幅减少重建所需时间,同时在重建完整性上也有所提升。然而,现有方法的特征提取效果一般和代价体之间的关联性较差,使得重建结果仍有可以提升的空间。针对以上问题,本文提出了一种双U-Net特征提取的多尺度代价体信息共享的多视角立体重建网络模型。方法 为了获得输入图像更加完整和准确的特征信息,设计了一个双U-Net特征提取模块,同时按照3个不同尺度构成由粗到细的级联结构输出特征;在代价体正则化阶段,设计了一个多尺度代价体信息共享的预处理模块,对小尺度代价体内的信息进行分离并传给下层代价体进行融合,由粗到细地进行深度图估计,使重建精度和完整度有大幅提升。结果 实验在DTU(Technical University of Denmark)数据集上与CasMVSNet相比,在准确度误差、完整度误差和整体性误差3个主要指标上分别提升约16.2%,6.5%和11.5%,相较于其他基于深度学习的方法更是有大幅度提升,并且在其他几个次要指标上也均有不同程度的提升。结论 提出的双U-Net提取多尺度代价体信息共享的多视角立体重建网络在特征提取和代价体正则化阶段均取得了效果,在重建精度上相比于原模型和其他方法都有一定的提升,验证了该方法的真实有效。
文摘目的针对多视图立体(multi-view stereo,MVS)重建效果整体性不理想的问题,本文对MVS 3D重建中的特征提取模块和代价体正则化模块进行研究,提出一种基于注意力机制的端到端深度学习架构。方法首先从输入的源图像和参考图像中提取深度特征,在每一级特征提取模块中均加入注意力层,以捕获深度推理任务的远程依赖关系;然后通过可微分单应性变换构建参考视锥的特征量,并构建代价体;最后利用多层U-Net体系结构正则化代价体,并通过回归结合参考图像边缘信息生成最终的细化深度图。结果在DTU(Technical University of Denmark)数据集上进行测试,与现有的几种方法相比,本文方法相较于Colmap、Gipuma和Tola方法,整体性指标分别提高8.5%、13.1%和31.9%,完整性指标分别提高20.7%、41.6%和73.3%;相较于Camp、Furu和Surface Net方法,整体性指标分别提高24.8%、33%和29.8%,准确性指标分别提高39.8%、17.6%和1.3%,完整性指标分别提高9.7%、48.4%和58.3%;相较于Pru Mvsnet方法,整体性指标提高1.7%,准确性指标提高5.8%;相较于Mvsnet方法,整体性指标提高1.5%,完整性标提高7%。结论在DTU数据集上的测试结果表明,本文提出的网络架构在整体性指标上得到了目前最优的结果,完整性和准确性指标得到较大提升,3D重建质量更好。