期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
一种提高人耳特征点识别度的目标区域提取方法 被引量:2
1
作者 蒋景英 张琪 +2 位作者 张昊 卢钧胜 徐可欣 《纳米技术与精密工程》 CAS CSCD 北大核心 2015年第4期271-275,共5页
对人耳进行特征识别多采用SURF算法,但该算法应用时极易受到图像中非目标区域的干扰,进而影响人耳特征点的检测和匹配准确度.基于目标区域的人耳特征识别算法可以突出目标区,而尽可能地抑制背景区域的影响.针对此问题,提出一种复合图像... 对人耳进行特征识别多采用SURF算法,但该算法应用时极易受到图像中非目标区域的干扰,进而影响人耳特征点的检测和匹配准确度.基于目标区域的人耳特征识别算法可以突出目标区,而尽可能地抑制背景区域的影响.针对此问题,提出一种复合图像分割算法—KRM法作为人耳识别的预处理方法,将图像中人耳所在目标区域提取出来.该KRM法分为3步:首先利用k-means聚类算法将图像初步分割为前景目标区域和背景两类;再通过区域生长算法对过度分割的区域进行合并;最后应用形态学腐蚀的方法进行滤波得到人耳所在的目标区域.将KRM目标区域提取和SURF方法联用(简称KRM-SURF算法)应用于50组人耳图像,进行人耳特征点的检测与匹配,实验结果表明,特征点识别度(RD)均值达到0.924,KRM法的使用能极大地提高基于SURF算法的人耳特征识别的准确性. 展开更多
关键词 特征识别 SURF算法 图像分割 K-MEANS聚类 识别
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部