The hydrogen abstraction reaction F+CH3OH has two possible reaction pathways: HF+CH3O and HF+CH2OH. Despite the absence of intrinsic barriers for both channels, the former has a branching ratio comparable to the latte...The hydrogen abstraction reaction F+CH3OH has two possible reaction pathways: HF+CH3O and HF+CH2OH. Despite the absence of intrinsic barriers for both channels, the former has a branching ratio comparable to the latter, which is far from the statistical limit of 0.25 (one out of four available H atoms). Furthermore, the measured branching ratio of the two abstraction channels spans a large range and is not quantitatively reproduced by previous theoretical predictions based on the transition-state theory with the stationary point information calculated at the levels of MФller-Plesset perturbation theory and G2. This work reports a theoretical investigation on the kinetics and the associated branching ratio of the two competing channels of the title reaction using a quasi-classical trajectory approach on an accurate full-dimensional potential energy surface (PES) fitted by the permutation invariant polynomial-neural network approach to ca. 1.21x10^5 points calculated at the explicitly correlated (F12a) version of coupled cluster singles doubles and perturbative triples (CCSD(T)) level with the aug-cc-pVDZ basis set. The calculated room temperature rate coeffcient and branching ratio of the HF+CH3O channel are in good agreement with the available experimental data. Furthermore, our theory predicts that rate coeffcients have a slightly negative temperature dependence, consistent with barrierless nature of the reaction.展开更多
Ab initio CCSD(T)/CBS//B3LYP/6-311G(d,p)calculations of the potential energy surface for possible dissociation channels of HOC2H3F,as well as Rice-Ramsperger-Kassel-Marcus(RRKM)calculations of rate constants,were carr...Ab initio CCSD(T)/CBS//B3LYP/6-311G(d,p)calculations of the potential energy surface for possible dissociation channels of HOC2H3F,as well as Rice-Ramsperger-Kassel-Marcus(RRKM)calculations of rate constants,were carried out,in order to predict statistical product branching ratios in dissociation of HOC2H3F at various internal energies.The most favorable reaction pathway leading to the major CH2CHO+HF products is as the following:OH+C2H3F→i2→TS14→i6→TS9→i3→TS3→CH2CHO+HF,where the rate-determining step is HF elimination from the CO bridging position via TS11,lying above the reactants by 3.8 kcal/mol.The CH2O+CH2F products can be formed by F atom migration from Cαto Cβposition via TS14,then H migration from O to Cαposition via TS16,and C-C breaking to form the products via TS5,which is 1.8 kcal/mol lower in energy than the reactants,and 4.0 kcal/mol lower than TS11.展开更多
基金supported by the National Natural Science Foundation of China (No.21573027 to Jun Li)the US Department of Energy (DE-SC0015997 to Hua Guo)
文摘The hydrogen abstraction reaction F+CH3OH has two possible reaction pathways: HF+CH3O and HF+CH2OH. Despite the absence of intrinsic barriers for both channels, the former has a branching ratio comparable to the latter, which is far from the statistical limit of 0.25 (one out of four available H atoms). Furthermore, the measured branching ratio of the two abstraction channels spans a large range and is not quantitatively reproduced by previous theoretical predictions based on the transition-state theory with the stationary point information calculated at the levels of MФller-Plesset perturbation theory and G2. This work reports a theoretical investigation on the kinetics and the associated branching ratio of the two competing channels of the title reaction using a quasi-classical trajectory approach on an accurate full-dimensional potential energy surface (PES) fitted by the permutation invariant polynomial-neural network approach to ca. 1.21x10^5 points calculated at the explicitly correlated (F12a) version of coupled cluster singles doubles and perturbative triples (CCSD(T)) level with the aug-cc-pVDZ basis set. The calculated room temperature rate coeffcient and branching ratio of the HF+CH3O channel are in good agreement with the available experimental data. Furthermore, our theory predicts that rate coeffcients have a slightly negative temperature dependence, consistent with barrierless nature of the reaction.
基金supported by the National Natural Science Foundation of China (No.91641116).
文摘Ab initio CCSD(T)/CBS//B3LYP/6-311G(d,p)calculations of the potential energy surface for possible dissociation channels of HOC2H3F,as well as Rice-Ramsperger-Kassel-Marcus(RRKM)calculations of rate constants,were carried out,in order to predict statistical product branching ratios in dissociation of HOC2H3F at various internal energies.The most favorable reaction pathway leading to the major CH2CHO+HF products is as the following:OH+C2H3F→i2→TS14→i6→TS9→i3→TS3→CH2CHO+HF,where the rate-determining step is HF elimination from the CO bridging position via TS11,lying above the reactants by 3.8 kcal/mol.The CH2O+CH2F products can be formed by F atom migration from Cαto Cβposition via TS14,then H migration from O to Cαposition via TS16,and C-C breaking to form the products via TS5,which is 1.8 kcal/mol lower in energy than the reactants,and 4.0 kcal/mol lower than TS11.