Sequence hybrid biological reactor (SHBR) was proposed, and some key control parameters were investigated for nitrogen removal from wastewater by simultaneous nitrification and denitrification (SND) via nitrite. S...Sequence hybrid biological reactor (SHBR) was proposed, and some key control parameters were investigated for nitrogen removal from wastewater by simultaneous nitrification and denitrification (SND) via nitrite. SND via nitrite was achieved in SHBR by controlling demand oxygen (DO) concentration. There was a programmed decrease of the DO from 2.50 mg·L^-1 to 0.30 mg·L^-1, and the average nitrite accumulation rate (NAR) was increased from 16.5% to 95.5% in 3 weeks. Subsequently, further increase in DO concentration to 1.50 mg·L^-1 did not destroy the partial nitrification to nitrite. The results showed that limited air flow rate to cause oxygen deficiency in the reactor would eventually induce only nitrification to nitrite and not further to nitrate. Nitrogen removal efficiency was increased with the increase in NAR, that is, NAR was increased from 60% to 90%, and total nitrogen removal efficiency was increased from 68% to 85%. The SHBR could tolerate high organic loading rate (OLR), COD and ammonia-nitrogen removal efficiency were greater than 92% and 93.5%, respectively,, and it even operated under low DO concentration (0.5 mg·L^-1) and maintained high OLR (4.0 kg COD·m^-3·d^-1). The presence of biofilm positively affected the activated sludge settling capability, and sludge volume index (SVI) of activated sludge in SHBR never hit more than 90 ml·L^-1 throughout the experiments.展开更多
Nitrous acid (HONO), as a primary precursor of OH radicals, has been considered one of the most important nitrogencontaining species in the atmosphere. Up to 30% of primary OH radical production is attributed to the...Nitrous acid (HONO), as a primary precursor of OH radicals, has been considered one of the most important nitrogencontaining species in the atmosphere. Up to 30% of primary OH radical production is attributed to the photolysis of HONO. However, the major HONO formation mechanisms are still under discussion. During the Campaigns of Air Quality Research in Beijing and Surrounding Region (CAREBeijing2006) campaign, comprehensive measurements were carried out in the megacity Beijing, where the chemical budget of HONO was fully constrained. The average diurnal HONO concentration varied from 0.33 to 1.2 ppbv. The net OH production rate from HONO, Pon(HONO)net, was on average (from 05:00 to 19:00) 7.1 × 10^6 molecule/(cm^3 s), 2.7 times higher than from 03 photolysis. This production rate demonstrates the important role of HONO in the atmospheric chemistry of megacity Beijing. An unknown HONO source (Punknown) with an average of 7.3 × 10^6 molecule/(cm^3 s) was derived from the budget analysis during daytime. Punknown provided four times more HONO than the reaction of NO with OH did. The diurnal variation of Punknown showed an apparent photo-enhanced feature with a maximum around 12:00, which was consistent with previous studies at forest and rural sites. Laboratory studies proposed new mechanisms to recruit NO2 and J(NO2) in order to explain a photo-enhancement of of Puknown. In this study, these mechanisms were validated against the observation-constraint Punknown. The reaction of exited NO2 accounted for only 6% of Puknown, and Punk poorly correlated with [NO2] (R = 0.26) and J(NO2)[NO2] (R = 0.35). These results challenged the role of NO2 as a major precursor of the missing HONO source.展开更多
基金the National Key Project of Scientific and Technical Supporting Program of Ministry of Science and Technology ofChina(2006BAC19B03)Academic Human Resources Development in Institutions of Higher Leading under the Jurisdiction ofBeijing Municipalitythe Specialized Research Fund for the Doctoral Program of Higher Education of China(20060005002).
文摘Sequence hybrid biological reactor (SHBR) was proposed, and some key control parameters were investigated for nitrogen removal from wastewater by simultaneous nitrification and denitrification (SND) via nitrite. SND via nitrite was achieved in SHBR by controlling demand oxygen (DO) concentration. There was a programmed decrease of the DO from 2.50 mg·L^-1 to 0.30 mg·L^-1, and the average nitrite accumulation rate (NAR) was increased from 16.5% to 95.5% in 3 weeks. Subsequently, further increase in DO concentration to 1.50 mg·L^-1 did not destroy the partial nitrification to nitrite. The results showed that limited air flow rate to cause oxygen deficiency in the reactor would eventually induce only nitrification to nitrite and not further to nitrate. Nitrogen removal efficiency was increased with the increase in NAR, that is, NAR was increased from 60% to 90%, and total nitrogen removal efficiency was increased from 68% to 85%. The SHBR could tolerate high organic loading rate (OLR), COD and ammonia-nitrogen removal efficiency were greater than 92% and 93.5%, respectively,, and it even operated under low DO concentration (0.5 mg·L^-1) and maintained high OLR (4.0 kg COD·m^-3·d^-1). The presence of biofilm positively affected the activated sludge settling capability, and sludge volume index (SVI) of activated sludge in SHBR never hit more than 90 ml·L^-1 throughout the experiments.
基金supported by the National Natural Science Foundation of China(21190052,40675072,41121004)the Ministry of Science and Technology of China(2002CB410801)the Beijing Council of Science and Technology(HB200504-6,HB200504-2)
文摘Nitrous acid (HONO), as a primary precursor of OH radicals, has been considered one of the most important nitrogencontaining species in the atmosphere. Up to 30% of primary OH radical production is attributed to the photolysis of HONO. However, the major HONO formation mechanisms are still under discussion. During the Campaigns of Air Quality Research in Beijing and Surrounding Region (CAREBeijing2006) campaign, comprehensive measurements were carried out in the megacity Beijing, where the chemical budget of HONO was fully constrained. The average diurnal HONO concentration varied from 0.33 to 1.2 ppbv. The net OH production rate from HONO, Pon(HONO)net, was on average (from 05:00 to 19:00) 7.1 × 10^6 molecule/(cm^3 s), 2.7 times higher than from 03 photolysis. This production rate demonstrates the important role of HONO in the atmospheric chemistry of megacity Beijing. An unknown HONO source (Punknown) with an average of 7.3 × 10^6 molecule/(cm^3 s) was derived from the budget analysis during daytime. Punknown provided four times more HONO than the reaction of NO with OH did. The diurnal variation of Punknown showed an apparent photo-enhanced feature with a maximum around 12:00, which was consistent with previous studies at forest and rural sites. Laboratory studies proposed new mechanisms to recruit NO2 and J(NO2) in order to explain a photo-enhancement of of Puknown. In this study, these mechanisms were validated against the observation-constraint Punknown. The reaction of exited NO2 accounted for only 6% of Puknown, and Punk poorly correlated with [NO2] (R = 0.26) and J(NO2)[NO2] (R = 0.35). These results challenged the role of NO2 as a major precursor of the missing HONO source.