期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于广义最大Versoria准则的稀疏自适应滤波算法
1
作者 欧跃发 杨鸣坤 +2 位作者 慕德俊 柯捷 马文涛 《计算机应用》 CSCD 北大核心 2021年第11期3325-3331,共7页
针对脉冲噪声干扰环境下传统稀疏自适应滤波稳态性能差,甚至无法收敛等问题,同时为提高稀疏参数辨识的精度的同时不增加过多计算代价,提出了一种基于广义最大Versoria准则(GMVC)的稀疏自适应滤波算法——带有CIM约束的GMVC(CIMGMVC)。首... 针对脉冲噪声干扰环境下传统稀疏自适应滤波稳态性能差,甚至无法收敛等问题,同时为提高稀疏参数辨识的精度的同时不增加过多计算代价,提出了一种基于广义最大Versoria准则(GMVC)的稀疏自适应滤波算法——带有CIM约束的GMVC(CIMGMVC)。首先,利用广义Versoria函数作为学习准则,其包含误差p阶矩的倒数形式,当脉冲干扰出现导致误差非常大时,GMVC将趋近于0,从而达到抑制脉冲噪声的目的。其次,将互相关熵诱导维度(CIM)作为稀疏惩罚约束和GMVC相结合来构建新代价函数,其中的CIM以高斯概率密度函数为基础,当选择合适核宽度时,可无限逼近于l_(0)-范数。最后,应用梯度法推导出CIMGMVC算法,并分析了所提算法的均方收敛性。在Matlab平台上采用α-stable分布模型产生脉冲噪声进行仿真,实验结果表明所提出的CIMGMVC算法能有效地抑制非高斯脉冲噪声的干扰,在稳健性方面优于传统稀疏自适应滤波,且稳态误差低于GMVC算法。 展开更多
关键词 自适应滤波 最大Versoria准则 稀疏参数估计 互相关诱导维度 非高斯噪声干扰
下载PDF
稀疏偏差补偿最小平均对数算法 被引量:1
2
作者 王学成 张佳庚 马文涛 《信息与控制》 CSCD 北大核心 2019年第4期413-419,共7页
针对最小平均对数(LMLS)算法在输入信号受噪声干扰的环境下进行稀疏系统辨识时存在精度低的问题,提出了一种稀疏偏差补偿LMLS算法.利用无偏准则推导偏差补偿项来修正输入噪声带来的偏差,构建偏差补偿LMLS.借助系统稀疏特性的先验知识,... 针对最小平均对数(LMLS)算法在输入信号受噪声干扰的环境下进行稀疏系统辨识时存在精度低的问题,提出了一种稀疏偏差补偿LMLS算法.利用无偏准则推导偏差补偿项来修正输入噪声带来的偏差,构建偏差补偿LMLS.借助系统稀疏特性的先验知识,采用互相关熵诱导维度作为稀疏惩罚约束条件,优化偏差补偿LMLS算法.仿真结果表明,所提算法对于含噪输入信号下的稀疏系统参数辨识具有高稳态精度. 展开更多
关键词 稀疏系统辨识 偏差补偿 最小平均对数 互相关诱导维度(CIM) 含噪输入信号
原文传递
基于CIM的偏差补偿稀疏NLMAD算法研究
3
作者 马占军 张佳庚 +1 位作者 马文涛 桂冠 《计算机应用研究》 CSCD 北大核心 2018年第9期2736-2740,共5页
针对输入信号受噪声干扰和输出观测噪声具有脉冲特征的稀疏系统辨识问题,提出一种基于CIM的偏差补偿(normalized least mean absolute deviation,NLMAD)算法,利用NLMAD算法可有效抵御脉冲输出观测噪声。首先应用无偏准则设计偏差补偿NL... 针对输入信号受噪声干扰和输出观测噪声具有脉冲特征的稀疏系统辨识问题,提出一种基于CIM的偏差补偿(normalized least mean absolute deviation,NLMAD)算法,利用NLMAD算法可有效抵御脉冲输出观测噪声。首先应用无偏准则设计偏差补偿NLMAD算法来有效解决由于输入噪声导致的估计偏差问题;考虑到稀疏系统辨识问题,将CIM作为稀疏约束惩罚项引入到偏差补偿NLMAD算法提出了新的稀疏自适应滤波算法——CIMBCNLMAD算法。将所提算法应用于输入和输出均含有噪声的稀疏系统辨识和回声干扰抵消场景中,实验表明CIMBCNLMAD算法的稳态性能优于其他自适应滤波算法,说明该方法具有较强的鲁棒性且可应用于工程实践。 展开更多
关键词 偏差补偿 稀疏系统辨识 互相关诱导维度(CCIM) NLMAD算法 脉冲噪声
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部