Cloud vertical structures and precipitation over the Tibetan Plateau (TP) are analyzed and compared with its neighboring land and tropical oceans based on CloudSat/CALIPSO satellite measurements and TRMM precipitati...Cloud vertical structures and precipitation over the Tibetan Plateau (TP) are analyzed and compared with its neighboring land and tropical oceans based on CloudSat/CALIPSO satellite measurements and TRMM precipitation data. Results show that the TP generally has a compression effect on cloud systems, as manifested by a shrinking cloud depth and lowering cloud top. Precipitation is weaker over the TP than its neighboring regions and exhibits large seasonal variations. In summer, cloud ice particles over the TP are mostly located at lower altitude (5-10 km), with a larger variability of sizes and aggregation (particle number concentration) under no-rain conditions compared to other regions. Ice water content becomes abundant and the number concentration tends to be dense at higher altitudes when precipitation is enhanced. However, even for heavy rainstorms, the aggregation is most likely between 100 and 250 L-1, whereas it can reach as high as 500 L-1 over its neighboring land and tropical oceans. Given the same magnitude of precipitation, the spectrum of ice particle sizes is found to be wider over the TP than other regions.展开更多
Accurate observation of clouds is challenging because of the high variability and complexity of cloud types and occurrences.By using the long-term cloud data collected during the ARM program at the Southern Great Plai...Accurate observation of clouds is challenging because of the high variability and complexity of cloud types and occurrences.By using the long-term cloud data collected during the ARM program at the Southern Great Plains central facility during 2001-2010,the consistencies and differences in the macrophysical properties of clouds between radiosonde and ground-based active remote sensing are quantitatively evaluated according to six cloud types:low;mid-low(ML);high-midlow;mid;high-mid(HM);and high.A similar variability trend is exhibited by the radiosonde and surface observations for the cloud fractions of the six cloud types.However,the magnitudes of the differences between the two methods are different among the six cloud types,with the largest difference seen in the high clouds.The distribution of the cloud-base height of the ML,mid,and HM clouds agrees in both methods,whereas large differences are seen in the cloud-top height for the ML and high clouds.The cloud thickness variations generally agree between the two datasets for the six cloud types.展开更多
基金jointly supported by the National Natural Science Foundation of China[grant number 91637312],[grant number 91437219]the Key Research Program of Frontier Sciences of CAS,the Third Tibetan Plateau Scientific Experiment[grant number GYHY201406001]+1 种基金the Science and Technology Development Project of Shanghai Meteorological Bureau[grant number QM201711]the Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund(second phase)
文摘Cloud vertical structures and precipitation over the Tibetan Plateau (TP) are analyzed and compared with its neighboring land and tropical oceans based on CloudSat/CALIPSO satellite measurements and TRMM precipitation data. Results show that the TP generally has a compression effect on cloud systems, as manifested by a shrinking cloud depth and lowering cloud top. Precipitation is weaker over the TP than its neighboring regions and exhibits large seasonal variations. In summer, cloud ice particles over the TP are mostly located at lower altitude (5-10 km), with a larger variability of sizes and aggregation (particle number concentration) under no-rain conditions compared to other regions. Ice water content becomes abundant and the number concentration tends to be dense at higher altitudes when precipitation is enhanced. However, even for heavy rainstorms, the aggregation is most likely between 100 and 250 L-1, whereas it can reach as high as 500 L-1 over its neighboring land and tropical oceans. Given the same magnitude of precipitation, the spectrum of ice particle sizes is found to be wider over the TP than other regions.
基金supported by the National Natural Science Foundation of China[grant numbers 41275039,61327810 and91337214]
文摘Accurate observation of clouds is challenging because of the high variability and complexity of cloud types and occurrences.By using the long-term cloud data collected during the ARM program at the Southern Great Plains central facility during 2001-2010,the consistencies and differences in the macrophysical properties of clouds between radiosonde and ground-based active remote sensing are quantitatively evaluated according to six cloud types:low;mid-low(ML);high-midlow;mid;high-mid(HM);and high.A similar variability trend is exhibited by the radiosonde and surface observations for the cloud fractions of the six cloud types.However,the magnitudes of the differences between the two methods are different among the six cloud types,with the largest difference seen in the high clouds.The distribution of the cloud-base height of the ML,mid,and HM clouds agrees in both methods,whereas large differences are seen in the cloud-top height for the ML and high clouds.The cloud thickness variations generally agree between the two datasets for the six cloud types.