期刊文献+
共找到234篇文章
< 1 2 12 >
每页显示 20 50 100
基于改进二维主成分分析的在线掌纹识别 被引量:36
1
作者 李强 裘正定 +1 位作者 孙冬梅 刘陆陆 《电子学报》 EI CAS CSCD 北大核心 2005年第10期1886-1889,共4页
掌纹识别是生物特征识别技术的新热点,论文提出使用二维主成分分析算法(2D PCA)提取掌纹图像的统计特征,实验表明其泛化能力优于传统主成分分析算法(PCA).在此基础上,论文提出且定义了改进的二维主成分分析,并证明它在保持训练样本图像... 掌纹识别是生物特征识别技术的新热点,论文提出使用二维主成分分析算法(2D PCA)提取掌纹图像的统计特征,实验表明其泛化能力优于传统主成分分析算法(PCA).在此基础上,论文提出且定义了改进的二维主成分分析,并证明它在保持训练样本图像总体散度的同时更有效的提取样本特征.改进的算法在得到99.72%高识别率的同时,大幅降低了原算法的特征维数、识别计算的复杂度,使系统的实用性进一步提高. 展开更多
关键词 掌纹识别 二维成分分析 改进二维成分分析 成分分析
下载PDF
二维投影非负矩阵分解算法及其在人脸识别中的应用 被引量:32
2
作者 方蔚涛 马鹏 +2 位作者 成正斌 杨丹 张小洪 《自动化学报》 EI CSCD 北大核心 2012年第9期1503-1512,共10页
建立在最小化非负矩阵分解损失函数上的人脸识别算法需同时计算基矩阵和系数矩阵,导致求解这类问题十分耗时.本文把非负属性引入二维主成分分析(2-dimensional principal component analysis,2DPCA)中,提出了一种新的二维投影非负矩阵分... 建立在最小化非负矩阵分解损失函数上的人脸识别算法需同时计算基矩阵和系数矩阵,导致求解这类问题十分耗时.本文把非负属性引入二维主成分分析(2-dimensional principal component analysis,2DPCA)中,提出了一种新的二维投影非负矩阵分解(2-dimensional projective non-negative matrix factorization,2DPNMF)人脸识别算法.该算法在保持人脸图像的局部结构情况下,突破了最小化非负矩阵分解损失函数的约束,仅需计算投影矩阵(基矩阵),从而降低了计算复杂度.本文从理论上证明了所提出算法的收敛性,同时,使用了YALE、FERET和AR三个人脸库进行实验,结果表明2DPNMF不仅识别率高,而且速度优于非负矩阵分解和二维主成分分析. 展开更多
关键词 二维成分分析 非负矩阵分解 人脸识别 特征提取
下载PDF
基于二维主成分分析的掌纹识别研究 被引量:24
3
作者 桑海峰 苑玮琦 +1 位作者 张志佳 黄静 《仪器仪表学报》 EI CAS CSCD 北大核心 2008年第9期1929-1933,共5页
掌纹作为一种新的生物特征可用来进行人的身份识别。论文提出了将二维主成分分析方法(2DPCA)应用于掌纹识别的特征提取,并在PolyU掌纹数据库上利用最近邻分类器与余弦距离度量进行了相应的实验,得到了99.4%的正确识别率。二维主成分分... 掌纹作为一种新的生物特征可用来进行人的身份识别。论文提出了将二维主成分分析方法(2DPCA)应用于掌纹识别的特征提取,并在PolyU掌纹数据库上利用最近邻分类器与余弦距离度量进行了相应的实验,得到了99.4%的正确识别率。二维主成分分析方法相比主成分分析方法(PCA)方法具有更高的识别率和更快的计算速度,尤其是在小样本训练数据的情况下优势更明显。同时论文也研究了不同应用系统下阈值的选取方法。 展开更多
关键词 二维成分分析 掌纹识别 成分分析 特征提取
下载PDF
一种基于2D-DWT和2D-PCA的人脸识别方法 被引量:13
4
作者 吴清江 周晓彦 郑文明 《计算机应用》 CSCD 北大核心 2006年第9期2089-2091,共3页
提出了一种联合图像二维离散小波变换(2D-DWT)和二维主成分分析(2D-PCA)的人脸识别方法。首先通过2D-DWT将当前图像分解成四个子图像,其中一子图像对应原图像的主体部分(低通部分),其余三个子图像则对应图像的细节部分(高通部分)。在此... 提出了一种联合图像二维离散小波变换(2D-DWT)和二维主成分分析(2D-PCA)的人脸识别方法。首先通过2D-DWT将当前图像分解成四个子图像,其中一子图像对应原图像的主体部分(低通部分),其余三个子图像则对应图像的细节部分(高通部分)。在此基础上,采用2D-PCA方法分别对每一子图像进行特征提取。此外,文中还提出了一种简单有效的方法对各子图像中所提取的特征进行融合,根据所得到的特征进行人脸识别。同其他基于小波分解的人脸识别方法相比,所提出的方法能更充分地利用人脸图像的有用判别信息,并得到更好的识别结果。 展开更多
关键词 二维离散小波变换 二维成分分析 人脸识别
下载PDF
基于PCA算法的人脸识别方法研究比较 被引量:14
5
作者 孙涛 谷士文 费耀平 《现代电子技术》 2007年第1期112-114,共3页
主成分分析(Principal Component Analysis,PCA)方法是人脸识别技术中一种广泛应用的数据降维技术。当通过使用PCA变换获得的主成分去重建原始人脸图像时,能使均方误差最小。在传统的PCA基础上,Yang等人提出了2DPCA方法,避免了从图像矩... 主成分分析(Principal Component Analysis,PCA)方法是人脸识别技术中一种广泛应用的数据降维技术。当通过使用PCA变换获得的主成分去重建原始人脸图像时,能使均方误差最小。在传统的PCA基础上,Yang等人提出了2DPCA方法,避免了从图像矩阵向一维向量的转换,并在人脸识别中获得了满意的效果。文章对这两种方法做了理论上比较并给予实验数据支持,实验证明,2DPCA在识别方面略优于传统PCA算法。 展开更多
关键词 成分分析 二维成分分析 数据降维 人脸识别
下载PDF
基于广义主成分分析的步态识别算法研究 被引量:13
6
作者 王科俊 贲晛烨 +1 位作者 孟玮 魏娟 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2009年第9期1022-1028,共7页
步态识别是根据人行走方式的不同对人的身份进行识别的.通过背景减除实现人体检测,运用形态学操作和图形几何变换实现了图像的标准中心化.在特征提取阶段使用步态能量图(GEI)来描述每个步态序列,分别使用主成分分析、二维主成分分析、... 步态识别是根据人行走方式的不同对人的身份进行识别的.通过背景减除实现人体检测,运用形态学操作和图形几何变换实现了图像的标准中心化.在特征提取阶段使用步态能量图(GEI)来描述每个步态序列,分别使用主成分分析、二维主成分分析、完全的二维主成分分析以及加权完全的二维主成分分析对特征进行降维,最后采用最近邻分类器来测试识别结果作对比研究.实验结果表明,权衡计算量和识别率,二维主成分分析对于GEI的步态识别比较有效,识别率可达95.43%. 展开更多
关键词 步态识别 步态能量图 成分分析 二维成分分析 加权完全的二维成分分析
下载PDF
人脸识别技术在门禁系统中的应用 被引量:15
7
作者 虞闯 魏新华 张明扬 《电脑开发与应用》 2010年第8期27-28,40,共3页
射频识别(RFID)技术与生物特征识别技术如今已经成为当代门禁技术的主流。提出了一种在门禁系统中利用RFID技术与人脸识别技术相结合进行身份验证的设计方案。实验表明,结合两种技术将会提高身份识别的安全性和有效性,满足了高度机密性... 射频识别(RFID)技术与生物特征识别技术如今已经成为当代门禁技术的主流。提出了一种在门禁系统中利用RFID技术与人脸识别技术相结合进行身份验证的设计方案。实验表明,结合两种技术将会提高身份识别的安全性和有效性,满足了高度机密性场所安全保护和高效率管理的需要。 展开更多
关键词 射频识别 人脸检测 特征提取 二维成分分析 人脸识别
下载PDF
图像化数据驱动的电力系统暂态稳定性在线评估方法 被引量:13
8
作者 彭鑫 刘俊 +3 位作者 刘嘉诚 李雨婷 刘晓明 赵誉 《智慧电力》 北大核心 2022年第11期17-24,共8页
目前电力系统暂态稳定性评估(TSA)大多采用标准算例生成的数据集,然而实际电网的母线、发电机、线路等电力元件的数量巨大,难以实现评估模型的实时监视和在线更新;而现有降维方法常常遗漏重要信息,导致预测精度下降。提出一种图像化数... 目前电力系统暂态稳定性评估(TSA)大多采用标准算例生成的数据集,然而实际电网的母线、发电机、线路等电力元件的数量巨大,难以实现评估模型的实时监视和在线更新;而现有降维方法常常遗漏重要信息,导致预测精度下降。提出一种图像化数据驱动的电力系统暂态稳定性在线评估方法,将输入时间序列重新排列成二维图像,利用二维主成分分析法(2D-PCA)对原始图像进行特征降维,并建立卷积神经网络(CNN)模型进行系统稳定性预测。在IEEE-39算例中进行验证,结果表明本文所提基于2D-PCA和CNN的TSA模型在保证预测精度的同时能够大幅提高训练效率,有望推进深度学习在电力系统暂态稳定性在线评估的应用。 展开更多
关键词 暂态稳定性评估 卷积神经网络 二维成分分析 在线评估
下载PDF
基于广义S变换与双向2DPCA的轴承故障诊断 被引量:13
9
作者 李巍华 林龙 单外平 《振动.测试与诊断》 EI CSCD 北大核心 2015年第3期499-506,592,共8页
将轴承故障诊断问题转化为故障信号时频图像的识别问题,提出一种采用双向二维主成分分析(two-directional,two-dimensional,principal component analysis,简称TD-2DPCA)的时频图像矩阵特征提取方法。首先,利用广义S变换将轴承故障信号... 将轴承故障诊断问题转化为故障信号时频图像的识别问题,提出一种采用双向二维主成分分析(two-directional,two-dimensional,principal component analysis,简称TD-2DPCA)的时频图像矩阵特征提取方法。首先,利用广义S变换将轴承故障信号变换为时频域图像,采用一种双向压缩的二维PCA方法对图像信息进行特征提取;然后,进行了轴承故障试验,分别采集了轴承在正常、内圈故障及外圈故障状态下的振动信号,采用所述方法对轴承3种状态下的时频分布图像进行特征提取,并根据集成矩阵距离(assembled matrix distance,简称AMD)实现图像的分类识别。试验结果表明,结合广义S变换的双向2DPCA特征提取算法可有效提高计算效率,同时具有良好的诊断性能。 展开更多
关键词 广义S变换 二维成分分析 图像识别 特征提取 故障诊断
下载PDF
改进的主成分分析网络极光图像分类方法 被引量:11
10
作者 韩冰 贾中华 高新波 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2017年第1期83-88,共6页
极光的不同形态蕴含了不同的物理意义,进行极光图像的分类研究对人类生活具有极其重要的科学价值.笔者在简单的深度学习模型主成分分析网络的基础上提出了一种改进的主成分分析网络极光图像分类方法.首先利用改进的主成分分析网络提取... 极光的不同形态蕴含了不同的物理意义,进行极光图像的分类研究对人类生活具有极其重要的科学价值.笔者在简单的深度学习模型主成分分析网络的基础上提出了一种改进的主成分分析网络极光图像分类方法.首先利用改进的主成分分析网络提取极光图像的特征,然后将所得特征输入支持向量机对极光图像进行分类.在中国北极黄河站的全天空图像数据库的分类实验结果表明,所提方法取得了较高分类准确率. 展开更多
关键词 极光图像 深度学习 成分分析 二维成分分析 成分分析网络
下载PDF
一种改进的模块2DPCA人脸识别新方法 被引量:11
11
作者 李晓东 费树岷 《系统仿真学报》 CAS CSCD 北大核心 2009年第15期4672-4675,共4页
提出了一种改进的模块2DPCA方法,即基于类内平均脸的分块2DPCA算法。该算法对每一类训练样本中每个训练样本的每一子块求类内平均脸,并用类内平均脸对训练样本类内的相应子块进行规范化处理,然后由所有规范化后的子块构成总体散布矩阵,... 提出了一种改进的模块2DPCA方法,即基于类内平均脸的分块2DPCA算法。该算法对每一类训练样本中每个训练样本的每一子块求类内平均脸,并用类内平均脸对训练样本类内的相应子块进行规范化处理,然后由所有规范化后的子块构成总体散布矩阵,从而得到最优投影矩阵;由训练集的全体子块的平均值对训练样本的子块和测试样本的子块进行规范化后投影到最优投影矩阵,得到识别特征;最后用最近距离分类器分类。在ORL人脸库上的实验结果表明,提出的方法在识别性能上明显优于2DPCA方法和普通模块2DPCA方法。 展开更多
关键词 二维成分分析 类内平均脸 模块化二维成分分析 特征矩阵 人脸识别
下载PDF
融合LBP纹理特征与B2DPCA技术的手指静脉识别方法 被引量:11
12
作者 胡娜 马慧 湛涛 《智能系统学报》 CSCD 北大核心 2019年第3期533-540,共8页
鉴于传统局部二进制模式(local binary pattern, LBP)算法对光照方向的变化非常敏感的问题,本文提出一种融合旋转不变模式的 LBP算子与 B2DPCA技术的手指静脉识别方法。首先提取手指静脉图像子块的LBP纹理谱特征,然后采用双向二维主成... 鉴于传统局部二进制模式(local binary pattern, LBP)算法对光照方向的变化非常敏感的问题,本文提出一种融合旋转不变模式的 LBP算子与 B2DPCA技术的手指静脉识别方法。首先提取手指静脉图像子块的LBP纹理谱特征,然后采用双向二维主成分分析方法对 LBP特征向量构成的特征矩阵进行有效的降维处理,再通过比对降维后的待识别静脉图像特征向量与其他样本的特征向量之间的欧式距离来实现最终的样本分类。通过在天津市智能实验室静脉库及马来西亚理科大学 FV-USM静脉库上进行实验验证,在不同训练样本数量下比较了 8种算法的识别性能,相比于单一的 LBP特征提取算法、经典降维算法和 LBP与经典降维组合特征提取算法,该方法的识别率有很大的提高,证明了本文方法的有效性。 展开更多
关键词 手指静脉识别 特征提取 LBP纹理特征 二维成分分析 双向二维成分分析 欧氏距离 图像特征向量 降维
下载PDF
基于2DPCA和RBF神经网络的人脸识别方法 被引量:9
13
作者 白雪飞 李茹 《计算机工程与应用》 CSCD 北大核心 2007年第34期200-203,共4页
采用2DPCA方法提取人脸图像的特征值,通过RBF神经网络进行训练和识别,提出一种基于2DPCA和RBF神经网络的人脸识别方法,并将此方法应用于ORL人脸库。实验结果表明,该方法不仅具有较好的人脸图像识别能力,而且能明显缩短识别算法的运行时间。
关键词 二维成分分析 RBF神经网络 人脸识别
下载PDF
基于2DPCA的有效非局部滤波方法 被引量:12
14
作者 郑钰辉 孙权森 夏德深 《自动化学报》 EI CSCD 北大核心 2010年第10期1379-1389,共11页
最近,非局部滤波方法已成为滤波领域的研究热点.本文深入研究了基于预选择的非局部滤波方法,指出了已有方法在提取图像片特征方面存在的不足,利用二维主成分分析(Two-dimensional principal component analysis,2DPCA)提出了一种有效的... 最近,非局部滤波方法已成为滤波领域的研究热点.本文深入研究了基于预选择的非局部滤波方法,指出了已有方法在提取图像片特征方面存在的不足,利用二维主成分分析(Two-dimensional principal component analysis,2DPCA)提出了一种有效的非局部滤波方法.该方法对基于预选择的非局部滤波方法的主要贡献有:1)用于提取图像片特征的面向图像片的2DPCA;2)基于相似距离直方图的相似集自动选取方法;3)相似距离权重参数局部自适应选取方法.实验结果表明,本文方法对弱梯度、人脸、纹理以及分段光滑图像均能取得较好的滤波效果. 展开更多
关键词 非局部滤波 二维成分分析 非局部正则化 图像片
下载PDF
基于氨基酸组成分布的蛋白质同源寡聚体分类研究 被引量:9
15
作者 施建宇 潘泉 +1 位作者 张绍武 程咏梅 《生物物理学报》 CAS CSCD 北大核心 2006年第1期49-56,共8页
基于一种新的特征提取方法——氨基酸组成分布,使用支持向量机作为成员分类器,采用“一对一”的多类分类策略,从蛋白质一级序列对四类同源寡聚体进行分类研究。结果表明,在10-CV检验下,基于氨基酸组成分布,其总分类精度和精度指数分别... 基于一种新的特征提取方法——氨基酸组成分布,使用支持向量机作为成员分类器,采用“一对一”的多类分类策略,从蛋白质一级序列对四类同源寡聚体进行分类研究。结果表明,在10-CV检验下,基于氨基酸组成分布,其总分类精度和精度指数分别达到了86.22%和67.12%,比基于氨基酸组成成分的传统特征提取方法分别提高了5.74和10.03个百分点,比二肽组成成分特征提取方法分别提高了3.12和5.63个百分点,说明氨基酸组成分布对于蛋白质同源寡聚体分类是一种非常有效的特征提取方法;将氨基酸组成分布和蛋白质序列长度特征组合,其总分类精度和精度指数分别达到了86.35%和67.23%,说明蛋白质序列长度特征含有一定的空间结构信息。 展开更多
关键词 氨基酸组成分 二维成分分析 支持向量机 同源寡聚体
下载PDF
基于能量的信息融合步态识别 被引量:10
16
作者 王科俊 贲晛烨 +1 位作者 刘丽丽 陈薇 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第5期14-17,共4页
针对步态能量图(GEI)和图像序列的Radon变换可以表征图像能量的特点,提出这两种形式的能量特征相融合的方法进行身份识别.在周期分割后的特征提取阶段分别使用GEI结合行列相结合的二维主成分分析((2D)2PCA)方法和对步态序列图像进行Rado... 针对步态能量图(GEI)和图像序列的Radon变换可以表征图像能量的特点,提出这两种形式的能量特征相融合的方法进行身份识别.在周期分割后的特征提取阶段分别使用GEI结合行列相结合的二维主成分分析((2D)2PCA)方法和对步态序列图像进行Radon变换,在周期模板构造后用列方向的二维主成分分析(2DPCA)降维方法进行数据压缩.在识别阶段,采用多视角及多特征在决策层的融合方法.应用上述方法在CASIA步态数据库上进行实验,结果表明所提的步态识别方法具有较高的识别性能. 展开更多
关键词 步态识别 步态能量图 RADON变换 二维成分分析 行列相结合的二维成分分析
原文传递
基于分段行列2D-PCA的高光谱图像数据降维方法 被引量:11
17
作者 张筱晗 杨桄 +1 位作者 黄俊华 杨永波 《计算机工程》 CAS CSCD 北大核心 2017年第9期256-262,共7页
针对传统二维主成分分析(2D-PCA)方法不能直接应用于高光谱图像数据降维的不足,提出一种基于分段行列2D-PCA的降维方法。利用高光谱图像波段间的相关系数进行波段子空间划分,在各子空间内通过旋转构建新的数据模型,以2D-PCA方法提取其... 针对传统二维主成分分析(2D-PCA)方法不能直接应用于高光谱图像数据降维的不足,提出一种基于分段行列2D-PCA的降维方法。利用高光谱图像波段间的相关系数进行波段子空间划分,在各子空间内通过旋转构建新的数据模型,以2D-PCA方法提取其行、列主成分信息,经过图像重建得到行、列主成分图像,对各波段子空间的行、列主成分图像进行小波分解,按照不同规则融合低频、高频系数,再通过小波逆变换得到降维后的图像。实验结果表明,与PCA和分段PCA方法相比,该方法在保证降维图像质量的前提下可缩短运算时间,提高高光谱图像的降维效率。 展开更多
关键词 高光谱图像 数据降维 二维成分分析 波段子空间划分 小波融合
下载PDF
复杂背景中的人脸识别技术研究 被引量:11
18
作者 王金云 周晖杰 纪政 《计算机工程》 CAS CSCD 2013年第8期196-199,203,共5页
针对复杂背景下的人脸图像,提出一种快速人脸检测识别方法。包括基于肤色模型和OpenCV的综合方法进行人脸检测定位,并对图像重新保存、预处理,用以克服光照因素的干扰,剔除复杂背景对人脸识别不利因素的影响。采用二维主成分分析算法,... 针对复杂背景下的人脸图像,提出一种快速人脸检测识别方法。包括基于肤色模型和OpenCV的综合方法进行人脸检测定位,并对图像重新保存、预处理,用以克服光照因素的干扰,剔除复杂背景对人脸识别不利因素的影响。采用二维主成分分析算法,对同一个人多幅不同表情的人脸图像进行采集和特征提取并归类。对ORL人脸库及实际外场背景下的人脸图像进行测试,结果表明,该方法可有效解决复杂背景下的人脸识别问题,具有快速、高效的实用性,正确识别率可达90%以上。 展开更多
关键词 复杂背景 OpenCV方法 肤色模型 二维成分分析 人脸识别技术
下载PDF
一种改进的2DPCA人脸识别方法 被引量:11
19
作者 韩晓翠 《计算机工程与应用》 CSCD 北大核心 2010年第25期185-187,共3页
在小样本情况下,传统的2DPCA算法中采用的训练样本的平均值不一定就是训练样本分布的中心,为了解决这个问题,提出了一种基于样本中间值的2DPCA人脸识别算法(M2DPCA),该算法采用训练样本的中间值代替训练样本的平均值,以此重建总体散布... 在小样本情况下,传统的2DPCA算法中采用的训练样本的平均值不一定就是训练样本分布的中心,为了解决这个问题,提出了一种基于样本中间值的2DPCA人脸识别算法(M2DPCA),该算法采用训练样本的中间值代替训练样本的平均值,以此重建总体散布矩阵。在ORL和FERET人脸数据库上的实验结果证明,新方法可以有效改善识别性能,优于传统的PCA和2DPCA方法。 展开更多
关键词 人脸识别 二维成分分析 样本中间值 特征提取
下载PDF
模糊支持向量机在人脸识别中的应用 被引量:10
20
作者 戴花 王建平 《计算机工程与应用》 CSCD 2012年第6期158-161,176,共5页
针对人脸图像特征提取领域应用主成分分析和二维主成分分析方法,使用二维特征值求解相关样本隶属度,并利用相关特征值方法进行分类。该方法结合二维特征值,在特征提取时进行人脸图像重构,具有快速稳定和局部特征清晰的优点。通过引入矩... 针对人脸图像特征提取领域应用主成分分析和二维主成分分析方法,使用二维特征值求解相关样本隶属度,并利用相关特征值方法进行分类。该方法结合二维特征值,在特征提取时进行人脸图像重构,具有快速稳定和局部特征清晰的优点。通过引入矩阵内积与二维主成分分析特征分类结果进行比较,实验结果表明,在ORL和Yale数据库中利用该方法进行识别分类取得了很好的效果。 展开更多
关键词 人脸识别 样本隶属度 二维成分分析 矩阵内积
下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部