该研究以显生宙碳循环异常环境的地球生物学过程为研究主体,重点研究二叠纪-三叠纪之交和晚泥盆世两大重大地质突变期的地球生物学过程特点和规律,查明碳循环异常的起因及其对生态系统的影响,探索生物与环境的相互作用。二叠纪—三叠纪...该研究以显生宙碳循环异常环境的地球生物学过程为研究主体,重点研究二叠纪-三叠纪之交和晚泥盆世两大重大地质突变期的地球生物学过程特点和规律,查明碳循环异常的起因及其对生态系统的影响,探索生物与环境的相互作用。二叠纪—三叠纪之交是古生代海洋生态系破坏和中生代型海洋生态系开始重建的转折点,古海洋缺氧对该转折影响深远。通过对华南多条剖面高精度碳同位素、碳-硫形态、碳酸盐晶格硫(CAS)、DOP和Δδ13C等分析测试,该年度研究在认识该时期古海洋缺氧的时限、程度、演化和成因机制等方面取得明显进展。大灭绝前的二叠纪浅水碳酸盐岩台地以氧化环境为主。由于火山活动释放大量的CO2、SO2等气体,导致气温上升、陆地生态系统开始瓦解、陆源输入增加、海洋贫氧层(OMZ)扩张,大灭绝后海洋环境向缺氧环境转变。早三叠世早期δ34SCAS明显比晚二叠世偏重,波动剧烈,且与δ13Ccarb明显正相关(3次同步正漂),意味着严重的海洋缺氧、硫化事件,海水硫酸盐浓度很低(<3 m M)。早三叠世早期δ13Ccarb频繁和幅度较大的波动,指示了动荡不稳定的海洋碳循环;之后δ13Ccarb和δ34SCAS变化率同步减小,两者呈现负相关关系,可能是由于海水温度下降、海水循环增强,海洋碳循环趋于稳定。中三叠世δ34SCAS下降,变化率进一步降低,碳-硫同位素的正相关关系逐渐消失,反映该时期海洋硫酸盐浓度进一步升高,以正常的氧化状态为主。大灭绝后动荡的海洋碳-硫循环及缺氧环境导致了生物复苏迟缓。晚泥盆世弗拉斯-法门(F-F)生物大灭绝事件是显生宙又一重大地质转折时期,集中体现在生物礁生态系中,菌藻类取代后生动物(珊瑚-层孔虫)造礁。对华南地区多个剖面细致的观察和统计分析表明,菌藻类可侵入"活着"的后生动物并抑制后生动物的发育。后生动物骨�展开更多
文摘该研究以显生宙碳循环异常环境的地球生物学过程为研究主体,重点研究二叠纪-三叠纪之交和晚泥盆世两大重大地质突变期的地球生物学过程特点和规律,查明碳循环异常的起因及其对生态系统的影响,探索生物与环境的相互作用。二叠纪—三叠纪之交是古生代海洋生态系破坏和中生代型海洋生态系开始重建的转折点,古海洋缺氧对该转折影响深远。通过对华南多条剖面高精度碳同位素、碳-硫形态、碳酸盐晶格硫(CAS)、DOP和Δδ13C等分析测试,该年度研究在认识该时期古海洋缺氧的时限、程度、演化和成因机制等方面取得明显进展。大灭绝前的二叠纪浅水碳酸盐岩台地以氧化环境为主。由于火山活动释放大量的CO2、SO2等气体,导致气温上升、陆地生态系统开始瓦解、陆源输入增加、海洋贫氧层(OMZ)扩张,大灭绝后海洋环境向缺氧环境转变。早三叠世早期δ34SCAS明显比晚二叠世偏重,波动剧烈,且与δ13Ccarb明显正相关(3次同步正漂),意味着严重的海洋缺氧、硫化事件,海水硫酸盐浓度很低(<3 m M)。早三叠世早期δ13Ccarb频繁和幅度较大的波动,指示了动荡不稳定的海洋碳循环;之后δ13Ccarb和δ34SCAS变化率同步减小,两者呈现负相关关系,可能是由于海水温度下降、海水循环增强,海洋碳循环趋于稳定。中三叠世δ34SCAS下降,变化率进一步降低,碳-硫同位素的正相关关系逐渐消失,反映该时期海洋硫酸盐浓度进一步升高,以正常的氧化状态为主。大灭绝后动荡的海洋碳-硫循环及缺氧环境导致了生物复苏迟缓。晚泥盆世弗拉斯-法门(F-F)生物大灭绝事件是显生宙又一重大地质转折时期,集中体现在生物礁生态系中,菌藻类取代后生动物(珊瑚-层孔虫)造礁。对华南地区多个剖面细致的观察和统计分析表明,菌藻类可侵入"活着"的后生动物并抑制后生动物的发育。后生动物骨�