期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于机器视觉技术的小粒中药材种子净度快速检测 被引量:4
1
作者 程莹 许亚男 +5 位作者 侯浩楠 宁翠玲 杨成民 董学会 曹海 孙群 《中国农业大学学报》 CAS CSCD 北大核心 2022年第5期114-122,共9页
为探究机器视觉技术用于小粒中药材种子净度快速检测的可行性,以黄芩、桔梗、黄芪、紫苏和柴胡5种常见小粒中药材种子为材料,使用扫描仪获取净种子、其他植物种子和所含杂质的图像,采用种子自动化分析系统(PhenoSeed)批量提取种子、其... 为探究机器视觉技术用于小粒中药材种子净度快速检测的可行性,以黄芩、桔梗、黄芪、紫苏和柴胡5种常见小粒中药材种子为材料,使用扫描仪获取净种子、其他植物种子和所含杂质的图像,采用种子自动化分析系统(PhenoSeed)批量提取种子、其他植物种子及所含杂质的颜色、尺寸及纹理信息,通过相关性分析和主成分分析进行特征变量的筛选,采用多层感知器(MLP)和二元逻辑回归(BLR)建立上述5种中药材种子净度快速检测模型。结果表明,净种子、其他植物种子及所含杂质在物理指标方面存在显著差异,针对不同种子,采用不同指标建立的MLP净度模型的训练集和测试集准确率均在96.0%以上,该模型在不同中药材种子上的稳定性均优于BLR模型;以特征指标建立的模型稳定性优于全部指标的建模效果,运用特征变量建立的MLP模型对不同净度梯度(75.0%~100.0%)的混合样本进行预测,回归曲线的决定系数均达到0.99以上。采用机器视觉技术获取种子、其他植物种子及所含杂质颜色、尺寸和纹理等信息,以特征指标建立MLP模型可用于小粒中药材种子的净度快速检测。 展开更多
关键词 小粒中药材种子 净度 机器视觉 多层感知器(MLP) 元逻辑回归(blr)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部