期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
关于二元函数的三角插值逼近
1
作者 张瑞 徐晓芳 《宝鸡文理学院学报(自然科学版)》 CAS 2008年第3期182-185,共4页
目的为克服Lagrange插值多项式不能对任意连续函数都一致收敛的问题,构造了一类二元乘积型三角插值多项式算子使得该算子在全平面上能够一致收敛到每个以2π为周期的二元连续函数。方法通过对Lagrange插值三角多项式的平移与组合,在已... 目的为克服Lagrange插值多项式不能对任意连续函数都一致收敛的问题,构造了一类二元乘积型三角插值多项式算子使得该算子在全平面上能够一致收敛到每个以2π为周期的二元连续函数。方法通过对Lagrange插值三角多项式的平移与组合,在已有成果的基础上做了推广,构造了一类形式较为广泛的二元乘积型三角插值多项式Tmn(f;x,y)=sum from κ=0 to 2m sum from l=0 to 2n f(xκ,yl)mακ(x)mβl(x),进而讨论了该算子的逼近性质。结果/结论证明了该算子在全平面上一致收敛到任意以2π为周期的二元连续函数,并且对C2sπ,r,2π(s≤α,r≤β)函数类的逼近均达到最佳收敛阶,即,当f(x,y)∈Cs2,πr,2π,s≤α,r≤β,成立|Tmn(f;x,y)-f(x,y)|=O{Em*n(f)+1/m^sω(~sf/x^s;1/m,0)+r/n^1ω(~rf/y^r;0,1/n)+1/m^s 1/n^rω(^(s+r)f/x^sy^r;1/m,1/n)}。 展开更多
关键词 元组合算 三角插值 一致收敛 收敛阶
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部