期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
三角形的九点二次曲线 被引量:2
1
作者 王奇志 王洪志 +1 位作者 王东生 王春华 《数学的实践与认识》 CSCD 北大核心 2006年第2期270-277,共8页
在任意三角形内,三边中点,三高的垂足,以及连接顶点与垂心的三线段的中点,都在同一圆上,此圆即为三角形九点圆.三角形的九点圆是欧氏几何中著名的优美定理,被称为欧拉圆和费尔巴哈圆.本文试图把垂心改换为平面内的任意点,相应地把三条... 在任意三角形内,三边中点,三高的垂足,以及连接顶点与垂心的三线段的中点,都在同一圆上,此圆即为三角形九点圆.三角形的九点圆是欧氏几何中著名的优美定理,被称为欧拉圆和费尔巴哈圆.本文试图把垂心改换为平面内的任意点,相应地把三条高线改换为过每个顶点各一条的共点直线组时,则将把三角形的九点圆有趣地推广为三角形的九点二次曲线.并具体讨论在不同的区域内得到的九点二次曲线. 展开更多
关键词 九点 九点椭圆 九点双曲线 九点二次曲线 欧拉线
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部