期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于PCA-SVDD的故障检测和自学习辨识 被引量:6
1
作者 祝志博 王培良 宋执环 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2010年第4期652-658,共7页
为了利用多变量统计过程控制在故障检测上的优势以及克服其在故障辨识诊断上的缺陷,提出一套新的用于化工过程的故障检测和自学习辨识算法.应用主元分析(PCA)实施故障检测并对故障数据运用PCA特征提取,提出3种基于主元分析-支持向量数... 为了利用多变量统计过程控制在故障检测上的优势以及克服其在故障辨识诊断上的缺陷,提出一套新的用于化工过程的故障检测和自学习辨识算法.应用主元分析(PCA)实施故障检测并对故障数据运用PCA特征提取,提出3种基于主元分析-支持向量数据描述(PCA-SVDD)的模式判别方法来实现故障的自学习辨识:考虑故障辨识时可能出现的类分布重合问题,分析和比较了基于欧氏距离和归一化半径判别这2种方法,提出针对新型未知故障辨识的加权归一化半径判别法.通过对Tennessee Eastman(TE)过程的仿真研究,说明了提出的故障检测和自学习辨识算法的可行性和有效性. 展开更多
关键词 分析-支持向量数据描述(pca-svdd) 特征提取 故障检测 故障自学习辨识
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部