期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于PCA-SVDD的故障检测和自学习辨识
被引量:
6
1
作者
祝志博
王培良
宋执环
《浙江大学学报(工学版)》
EI
CAS
CSCD
北大核心
2010年第4期652-658,共7页
为了利用多变量统计过程控制在故障检测上的优势以及克服其在故障辨识诊断上的缺陷,提出一套新的用于化工过程的故障检测和自学习辨识算法.应用主元分析(PCA)实施故障检测并对故障数据运用PCA特征提取,提出3种基于主元分析-支持向量数...
为了利用多变量统计过程控制在故障检测上的优势以及克服其在故障辨识诊断上的缺陷,提出一套新的用于化工过程的故障检测和自学习辨识算法.应用主元分析(PCA)实施故障检测并对故障数据运用PCA特征提取,提出3种基于主元分析-支持向量数据描述(PCA-SVDD)的模式判别方法来实现故障的自学习辨识:考虑故障辨识时可能出现的类分布重合问题,分析和比较了基于欧氏距离和归一化半径判别这2种方法,提出针对新型未知故障辨识的加权归一化半径判别法.通过对Tennessee Eastman(TE)过程的仿真研究,说明了提出的故障检测和自学习辨识算法的可行性和有效性.
展开更多
关键词
主
元
分析
-
支持
向量
数据
描述
(
pca
-
svdd
)
特征提取
故障检测
故障自学习辨识
下载PDF
职称材料
题名
基于PCA-SVDD的故障检测和自学习辨识
被引量:
6
1
作者
祝志博
王培良
宋执环
机构
浙江大学工业控制技术国家重点实验室
湖州师范学院信息工程学院
出处
《浙江大学学报(工学版)》
EI
CAS
CSCD
北大核心
2010年第4期652-658,共7页
基金
国家自然科学基金资助项目(60974056,60736021)
浙江省自然科学基金资助项目(Y1080871)
文摘
为了利用多变量统计过程控制在故障检测上的优势以及克服其在故障辨识诊断上的缺陷,提出一套新的用于化工过程的故障检测和自学习辨识算法.应用主元分析(PCA)实施故障检测并对故障数据运用PCA特征提取,提出3种基于主元分析-支持向量数据描述(PCA-SVDD)的模式判别方法来实现故障的自学习辨识:考虑故障辨识时可能出现的类分布重合问题,分析和比较了基于欧氏距离和归一化半径判别这2种方法,提出针对新型未知故障辨识的加权归一化半径判别法.通过对Tennessee Eastman(TE)过程的仿真研究,说明了提出的故障检测和自学习辨识算法的可行性和有效性.
关键词
主
元
分析
-
支持
向量
数据
描述
(
pca
-
svdd
)
特征提取
故障检测
故障自学习辨识
Keywords
principal component analysis-support vector data description (
pca
-
svdd
)
feature extraction
fault detection
fault self-learning identification
分类号
TP277 [自动化与计算机技术—检测技术与自动化装置]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于PCA-SVDD的故障检测和自学习辨识
祝志博
王培良
宋执环
《浙江大学学报(工学版)》
EI
CAS
CSCD
北大核心
2010
6
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部