Projection of future climate changes and their regional impact is critical for long-term planning at the national and regional levels aimed at adaptation and mitigation. This study assesses the future changes in preci...Projection of future climate changes and their regional impact is critical for long-term planning at the national and regional levels aimed at adaptation and mitigation. This study assesses the future changes in precipitation in China and the associated atmospheric circulation patterns using the Couple Model Intercomparison Project 5 Phase (CMIP5) simulations under the RCP4.5 and RCP8.5 scenarios. The results consistently indicate that the annual precipitation in China is projected to significantly increase at the end of the 21st century compared to the present-day levels. The number of days and the intensity of medium rain, large rain and heavy rain are obviously increased, while the number of trace rain days is projected to decrease over the entire area of China. Further analysis indicates that the significant increase of annual precipitation in Northwest China is primarily due to the increase of light rain and the increases in North and Northeast China are primarily due to the increase of medium rain. In the region of southern China, the increases of large rain and heavy rain play an important role in the increase of annual precipitation, while light rain events play a negative role. Analysis of the changes in atmospheric circulation indicates that the East Asian summer monsoon circulation is projected to be considerably stronger, and the local atmospheric stratification is projected to be more unstable, all of which provide a background benefit for the increase of precipitation and extreme rainfall events in China under global warming scenarios.展开更多
Climate change in the 21st century over China is simulated using the Abdus Salam International Centre for Theoretical Physics (ICTP) Regional Climate Model version 3 (RegCM3). The model is one-way nested within the gl...Climate change in the 21st century over China is simulated using the Abdus Salam International Centre for Theoretical Physics (ICTP) Regional Climate Model version 3 (RegCM3). The model is one-way nested within the global model CCSR/NIES/FRCGC MIROC3.2_hires (Center for Climate System Research/National Institute for Environmental Studies/Frontier Research Center for Global Change/Model for Interdisciplinary Research on Climate). A 150-year (1951-2100) transient simulation is conducted at 25 km grid spacing, under the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (IPCC SRES) A1B scenario. Simulations of present climate conditions in China by RegCM3 are compared against observations to assess model performance. Results show that RegCM3 reproduces the observed spatial structure of surface air temperature and precipitation well. Changes in mean temperature and precipitation in December-January-February (DJF) and June-July-August (JJA) during the middle and end of the 21st century are analyzed. Significant future warming is simulated by RegCM3. This warming becomes greater with time, and increased warming is simulated at high latitude and high altitude (Tibetan Plateau) areas. In the middle of the 21st century in DJF, a general increase of precipitation is found in most areas, except over the Tibetan Plateau. Precipitation changes in JJA show an increase over northwest China and a decrease over the Tibetan Plateau. There is a mixture of positive and negative changes in eastern China. The change pattern at the end of the century is generally consistent with that in mid century, except in some small areas, and the magnitude of change is usually larger. In addition, the simulation is compared with a previous simulation of the RegCM3 driven by a different global model, to address uncertainties of the projected climate change in China.展开更多
基金supported by the National Basic Research Program of China (2012CB955401)the "Strategic Priority Research Program-Climate Change: Carbon Budget and Relevant Issues" of the Chinese Academy of Sciences (XDA05090306)+1 种基金the National Natural Science Foundation of China (41275075)the CAS-CSIRO Cooperative Research Program (GJHZ1223)
文摘Projection of future climate changes and their regional impact is critical for long-term planning at the national and regional levels aimed at adaptation and mitigation. This study assesses the future changes in precipitation in China and the associated atmospheric circulation patterns using the Couple Model Intercomparison Project 5 Phase (CMIP5) simulations under the RCP4.5 and RCP8.5 scenarios. The results consistently indicate that the annual precipitation in China is projected to significantly increase at the end of the 21st century compared to the present-day levels. The number of days and the intensity of medium rain, large rain and heavy rain are obviously increased, while the number of trace rain days is projected to decrease over the entire area of China. Further analysis indicates that the significant increase of annual precipitation in Northwest China is primarily due to the increase of light rain and the increases in North and Northeast China are primarily due to the increase of medium rain. In the region of southern China, the increases of large rain and heavy rain play an important role in the increase of annual precipitation, while light rain events play a negative role. Analysis of the changes in atmospheric circulation indicates that the East Asian summer monsoon circulation is projected to be considerably stronger, and the local atmospheric stratification is projected to be more unstable, all of which provide a background benefit for the increase of precipitation and extreme rainfall events in China under global warming scenarios.
基金the National Basic Research Program of China (2009CB421407)China-UK-Swiss Adapting to Climate Change in China Project (ACCC)the Special Research Program for Public-welfare Forestry (200804001)
文摘Climate change in the 21st century over China is simulated using the Abdus Salam International Centre for Theoretical Physics (ICTP) Regional Climate Model version 3 (RegCM3). The model is one-way nested within the global model CCSR/NIES/FRCGC MIROC3.2_hires (Center for Climate System Research/National Institute for Environmental Studies/Frontier Research Center for Global Change/Model for Interdisciplinary Research on Climate). A 150-year (1951-2100) transient simulation is conducted at 25 km grid spacing, under the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (IPCC SRES) A1B scenario. Simulations of present climate conditions in China by RegCM3 are compared against observations to assess model performance. Results show that RegCM3 reproduces the observed spatial structure of surface air temperature and precipitation well. Changes in mean temperature and precipitation in December-January-February (DJF) and June-July-August (JJA) during the middle and end of the 21st century are analyzed. Significant future warming is simulated by RegCM3. This warming becomes greater with time, and increased warming is simulated at high latitude and high altitude (Tibetan Plateau) areas. In the middle of the 21st century in DJF, a general increase of precipitation is found in most areas, except over the Tibetan Plateau. Precipitation changes in JJA show an increase over northwest China and a decrease over the Tibetan Plateau. There is a mixture of positive and negative changes in eastern China. The change pattern at the end of the century is generally consistent with that in mid century, except in some small areas, and the magnitude of change is usually larger. In addition, the simulation is compared with a previous simulation of the RegCM3 driven by a different global model, to address uncertainties of the projected climate change in China.