有一习题:如图1,圆 A 的半径为圆 B 半径的1/3,圆 A 从图上位置出发绕圆 B作匀速无滑动滚动,若圆 A的圆心第一次返回到它的出发点时需1秒钟,问圆 A 的角速度为多少?对这道习题,几乎所有的学生都作了如下的分析与解答:设圆 A 的半径为 r...有一习题:如图1,圆 A 的半径为圆 B 半径的1/3,圆 A 从图上位置出发绕圆 B作匀速无滑动滚动,若圆 A的圆心第一次返回到它的出发点时需1秒钟,问圆 A 的角速度为多少?对这道习题,几乎所有的学生都作了如下的分析与解答:设圆 A 的半径为 r。圆 A 绕圆 B 作无滑动滚动(以下简称滚动)一周时,展开更多
In this paper we present a generalized resolution method by using paramodulation and prove its completeness. Using this method, the equality relation is more natural and simpler. Definition 1. An E-interpretation I of...In this paper we present a generalized resolution method by using paramodulation and prove its completeness. Using this method, the equality relation is more natural and simpler. Definition 1. An E-interpretation I of a set S of generalized clauses is an interpretation of S satisfying the following four conditions. Let α, β, and ν be any terms in the展开更多
设Q(q)=multiply from n=1 to ∞((1-q<sup>n</sup>)(|q|【1))欧拉的五边形数定理为 Q(q)=sum from n=0 to ∞((-1)<sup>n</sup>q<sup>n(3n+1)</sup>/2)(1-q<sup>2n+1</sup...设Q(q)=multiply from n=1 to ∞((1-q<sup>n</sup>)(|q|【1))欧拉的五边形数定理为 Q(q)=sum from n=0 to ∞((-1)<sup>n</sup>q<sup>n(3n+1)</sup>/2)(1-q<sup>2n+1</sup>)雅可比得到Q(q)<sup>3</sup>=sum from n=0 to ∞((-1)<sup>n</sup>(2n+1)q<sup>n+1</sup>/2)本文得到Q(q)<sup>2</sup>=sum from n=0 to ∞((-1)<sup>n</sup>q<sup>n(n+1)/2</sup>(1-q<sup>2n+2</sup>)p<sub>n</sub>(q))其中p<sub>n</sub><sup>h</sup>(q)=sum from r=0 to n(q<sup>r</sup>(n-r)) 证明:由[1;p.36,eq.(3.3.6)] sum from j=0 to N((Q)<sub>v</sub>/(q)<sub>1</sub>(q)<sub>n-j</sub>(-1)<sup>i</sup>Z<sup>i</sup>q<sup>j(j-1)/2</sup>)=(z)<sub>N</sub>. (1)及[1;p.19,Cor.2.3.α=b=0,i=q,c=q<sup>2r+1</sup>]展开更多
文摘有一习题:如图1,圆 A 的半径为圆 B 半径的1/3,圆 A 从图上位置出发绕圆 B作匀速无滑动滚动,若圆 A的圆心第一次返回到它的出发点时需1秒钟,问圆 A 的角速度为多少?对这道习题,几乎所有的学生都作了如下的分析与解答:设圆 A 的半径为 r。圆 A 绕圆 B 作无滑动滚动(以下简称滚动)一周时,
文摘In this paper we present a generalized resolution method by using paramodulation and prove its completeness. Using this method, the equality relation is more natural and simpler. Definition 1. An E-interpretation I of a set S of generalized clauses is an interpretation of S satisfying the following four conditions. Let α, β, and ν be any terms in the
文摘设Q(q)=multiply from n=1 to ∞((1-q<sup>n</sup>)(|q|【1))欧拉的五边形数定理为 Q(q)=sum from n=0 to ∞((-1)<sup>n</sup>q<sup>n(3n+1)</sup>/2)(1-q<sup>2n+1</sup>)雅可比得到Q(q)<sup>3</sup>=sum from n=0 to ∞((-1)<sup>n</sup>(2n+1)q<sup>n+1</sup>/2)本文得到Q(q)<sup>2</sup>=sum from n=0 to ∞((-1)<sup>n</sup>q<sup>n(n+1)/2</sup>(1-q<sup>2n+2</sup>)p<sub>n</sub>(q))其中p<sub>n</sub><sup>h</sup>(q)=sum from r=0 to n(q<sup>r</sup>(n-r)) 证明:由[1;p.36,eq.(3.3.6)] sum from j=0 to N((Q)<sub>v</sub>/(q)<sub>1</sub>(q)<sub>n-j</sub>(-1)<sup>i</sup>Z<sup>i</sup>q<sup>j(j-1)/2</sup>)=(z)<sub>N</sub>. (1)及[1;p.19,Cor.2.3.α=b=0,i=q,c=q<sup>2r+1</sup>]
文摘今天,我们为大家推荐的这首《Stairway to heaven》便是选自《Led Zeppelin Ⅳ》专辑当中最为著名的一首歌曲。很多年轻的朋友能够认识并了解Led Zeppelin乐队,也正是从这首歌曲开始的。如果你之前对Led Zeppelin乐队还较为陌生的话,那么,今天就让我们从这首《Stairway to heaven》来感受一下Led Zeppelin的魅力吧!