期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
改进的基于粒子群优化的支持向量机特征选择和参数联合优化算法 被引量:38
1
作者 张进 丁胜 李波 《计算机应用》 CSCD 北大核心 2016年第5期1330-1335,共6页
针对支持向量机(SVM)中特征选择和参数优化对分类精度有较大影响,提出了一种改进的基于粒子群优化(PSO)的SVM特征选择和参数联合优化算法(GPSO-SVM),使算法在提高分类精度的同时选取尽可能少的特征数目。为了解决传统粒子群算法... 针对支持向量机(SVM)中特征选择和参数优化对分类精度有较大影响,提出了一种改进的基于粒子群优化(PSO)的SVM特征选择和参数联合优化算法(GPSO-SVM),使算法在提高分类精度的同时选取尽可能少的特征数目。为了解决传统粒子群算法在进行优化时易出现陷入局部最优和早熟的问题,该算法在PSO中引入遗传算法(GA)中的交叉变异算子,使粒子在每次迭代更新后进行交叉变异操作来避免这一问题。该算法通过粒子之间的不相关性指数来决定粒子之间的交叉配对,由粒子适应度值的大小决定其变异概率的大小,由此产生新的粒子进入到群体中。这样使得粒子跳出当前搜索到的局部最优位置,提高了群体的多样性,在全局范围内寻找更优值。在不同数据集上进行实验,与基于PSO和GA的特征选择和SVM参数联合优化算法相比,GPSO-SVM的分类精度平均提高了2%~3%,选择的特征数目减少了3%~15%。实验结果表明,所提算法的特征选择和参数优化效果更好。 展开更多
关键词 支持向量机 特征选择 参数优化 粒子群优化算法 遗传算法 相关性指数
下载PDF
一种遗传算法交叉算子的改进算法 被引量:26
2
作者 卢厚清 陈亮 +2 位作者 宋以胜 吴值民 邹赟波 《解放军理工大学学报(自然科学版)》 EI 2007年第3期250-253,共4页
为了有效克服遗传算法收敛速度慢和易陷入局部极值点的缺点,提出了一种遗传算法交叉算子的改进算法,即采用自适应交叉概率,给不相关大的个体赋予较大的被选概率的配对方式进行交叉操作;在适应度比例轮盘赌的基础上辅以父子竞争的选择操... 为了有效克服遗传算法收敛速度慢和易陷入局部极值点的缺点,提出了一种遗传算法交叉算子的改进算法,即采用自适应交叉概率,给不相关大的个体赋予较大的被选概率的配对方式进行交叉操作;在适应度比例轮盘赌的基础上辅以父子竞争的选择操作。二元多峰值Schaffer函数优化的仿真实例结果表明:与保留最优个体策略的遗传算法相比,改进算法能有效减少无效的交叉操作,收敛速度和全局搜索能力都得到了较大提高,其平均收敛代数和收敛到最优解的概率都优于保留最佳个体策略的遗传算法。 展开更多
关键词 自适应交叉概率 相关性指数 配对 父子竞争
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部