We show that the time-dependent two-mode Fresnel operator is just the time-evolutional unitary operator governed by the Hamiltonian composed of quadratic combination of canonical operators in the way of exhibiting SU...We show that the time-dependent two-mode Fresnel operator is just the time-evolutional unitary operator governed by the Hamiltonian composed of quadratic combination of canonical operators in the way of exhibiting SU(1,1) algebra. This is an approach for obtaining the time-dependent Hamiltonian from the preassigned time evolution in classical phase space, an approach which is in contrast to Lewis-Riesenfeld's invariant operator theory of treating timedependent harmonic oscillators.展开更多
Based on the invariant eigen-operator method (lEO) [Phys. Left. A 321 (2004) 75] we derive the exact energy gap for some Hamiltonians, which describe some polariton systems. The result shows that in some cases the...Based on the invariant eigen-operator method (lEO) [Phys. Left. A 321 (2004) 75] we derive the exact energy gap for some Hamiltonians, which describe some polariton systems. The result shows that in some cases the IEO method, stemming from the Heisenberg approach, is more direct and convenient for deriving the energy-level gap formula than via the approach of solving the Schrodinger equation.展开更多
基金The project supported by National Natural Science Foundation of China under Grant No. 10475056.
文摘We show that the time-dependent two-mode Fresnel operator is just the time-evolutional unitary operator governed by the Hamiltonian composed of quadratic combination of canonical operators in the way of exhibiting SU(1,1) algebra. This is an approach for obtaining the time-dependent Hamiltonian from the preassigned time evolution in classical phase space, an approach which is in contrast to Lewis-Riesenfeld's invariant operator theory of treating timedependent harmonic oscillators.
基金The project supported by National Natural Science Foundation of China under Grant No. 10475056 and the President Foundation of the Chinese Academy of Sciences.
文摘Based on the invariant eigen-operator method (lEO) [Phys. Left. A 321 (2004) 75] we derive the exact energy gap for some Hamiltonians, which describe some polariton systems. The result shows that in some cases the IEO method, stemming from the Heisenberg approach, is more direct and convenient for deriving the energy-level gap formula than via the approach of solving the Schrodinger equation.