期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
融合多尺度特征的拼接篡改图像检测算法
1
作者 吴琛 邵叱风 《兰州工业学院学报》 2024年第4期43-47,共5页
针对当前拼接篡改图像检测与定位方法主要专注于检测和定位小范围的篡改区域,而对于不均匀大小位置目标对象的模型性能表现不佳等问题,提出一种用于拼接篡改图像的检测与定位的新型网络架构DEUNet。DEUNet在UNet基础上引入高效加性注意... 针对当前拼接篡改图像检测与定位方法主要专注于检测和定位小范围的篡改区域,而对于不均匀大小位置目标对象的模型性能表现不佳等问题,提出一种用于拼接篡改图像的检测与定位的新型网络架构DEUNet。DEUNet在UNet基础上引入高效加性注意力和双向残差块,用于处理不同尺度的特征,在更完整地定位大尺度篡改区域的同时减少模型的复杂度,并结合交叉熵和Dice损失函数以更好地平衡分类精度和分割准确性。实验结果表明,提出的方法性能优于其他算法,且具有良好的鲁棒性;DEUNet能成功处理不固定大小位置目标且实验验证性能优于最新算法。 展开更多
关键词 TRANSFORMER 上下文交互 图像拼接篡改定位 高效加性注意力 全局依赖建模能力
下载PDF
基于Mogrifier LSTM的序列标注关系抽取方法 被引量:2
2
作者 方义秋 刘飞 葛君伟 《计算机工程》 CAS CSCD 北大核心 2022年第10期81-87,94,共8页
对文本中的上下文信息进行充分利用能够提高关系抽取性能,但当前多数基于深度学习的关系抽取方法仅捕获文本序列中的浅层特征信息,在长序列文本中易丢失上下文信息。针对传统LSTM中输入和隐藏状态之间相互独立且缺少信息交互的问题,建... 对文本中的上下文信息进行充分利用能够提高关系抽取性能,但当前多数基于深度学习的关系抽取方法仅捕获文本序列中的浅层特征信息,在长序列文本中易丢失上下文信息。针对传统LSTM中输入和隐藏状态之间相互独立且缺少信息交互的问题,建立一种基于Mogrifier LSTM的序列标注关系抽取模型。将由词嵌入、字符嵌入和位置嵌入构成的嵌入层结果输入Mogrifier LSTM层,该层通过在传统LSTM计算之前交替地让当前输入与之前隐藏状态进行多轮运算,以增强上下文交互能力。使用自注意力机制提高模型对重要特征的关注度,同时采用基于关系的注意力机制获取特定关系下的句子表示,从而解决实体关系重叠问题。在关系分类模块,利用Bi-LSTM进行序列标注,将句子中的每个词汇映射为相应的标签。实验结果表明,在NYT数据集上该模型的F1值达到0.841,优于HRL、OrderRL等模型,在存在SEO重叠类型的关系抽取中,F1值仍能达到0.745,所提模型能够在一定程度上解决关系重叠问题同时有效提升关系抽取性能。 展开更多
关键词 关系抽取 Mogrifier LSTM模型 上下文交互 注意力机制 关系重叠
下载PDF
基于特征聚合和传播网络的图像超分辨率重建
3
作者 薄阳瑜 刘晓晶 +1 位作者 武永亮 王学军 《模式识别与人工智能》 EI CSCD 北大核心 2024年第4期299-312,共14页
基于深度学习的图像超分辨率重建通过网络加深提升图像重建性能,但复杂网络会导致参数量急剧增加,限制其在资源受限设备上的应用.针对此问题,文中提出基于特征聚合和传播网络的图像超分辨率重建方法,采用逐步提取融合特征的方式获取图... 基于深度学习的图像超分辨率重建通过网络加深提升图像重建性能,但复杂网络会导致参数量急剧增加,限制其在资源受限设备上的应用.针对此问题,文中提出基于特征聚合和传播网络的图像超分辨率重建方法,采用逐步提取融合特征的方式获取图像丰富的内部信息.首先,提出上下文交互注意力模块,使网络学习到特征图丰富的上下文信息,提高特征的利用率.然后,设计多维注意力增强模块,提高网络对关键特征的判别能力,分别在通道和空间两个维度提取高频信息.最后,提出特征聚合传播模块,有效聚合深层细节信息,去除冗余信息,并促进有效信息在网络中传播.在Set5、Set14、BSD100、Urban100等基准数据集上的测试实验表明,文中方法性能较优,重建后的图像细节纹理较清晰. 展开更多
关键词 图像超分辨率重建 卷积神经网络 上下文交互注意力 多维注意力 特征聚合
下载PDF
基于情感上下文的语音情感推理算法 被引量:2
4
作者 毛启容 白李娟 +1 位作者 王丽 詹永照 《模式识别与人工智能》 EI CSCD 北大核心 2014年第9期826-834,共9页
针对前后相邻情感语句的情感变化存在相互关联的特性,提出基于情感上下文的情感推理算法.该算法首先利用传统语音情感特征和上下文语音情感特征分别识别待分析情感语句的情感状态,然后借助情感交互矩阵及两类情感特征识别结果的置信度... 针对前后相邻情感语句的情感变化存在相互关联的特性,提出基于情感上下文的情感推理算法.该算法首先利用传统语音情感特征和上下文语音情感特征分别识别待分析情感语句的情感状态,然后借助情感交互矩阵及两类情感特征识别结果的置信度对待测试语句的情感状态进行融合推理.在此基础上,建立语音情感上下文推理规则,利用该规则根据相邻语句的情感状态对待分析情感语句情感状态进行调整,最终得出待分析情感语句所属的情感类别.在自行录制的包含6种基本情感数据库上的实验结果表明,与仅采用声学特征的方法相比,文中提出方法平均识别率提高12.17%. 展开更多
关键词 语音情感识别 情感上下文 情感推理规则 上下文语音情感特征 情感上下文交互矩阵
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部