针对目前连续语音识别中广泛使用的齐次HMM(hidden Markov model)模型识别精度低的现状,该文提出了三音子DDBHMM(duration distribution based HMM)识别方法。根据汉语的特点,设计了适用于连续语音识别的三音子。描述了识别中使用的MLSS...针对目前连续语音识别中广泛使用的齐次HMM(hidden Markov model)模型识别精度低的现状,该文提出了三音子DDBHMM(duration distribution based HMM)识别方法。根据汉语的特点,设计了适用于连续语音识别的三音子。描述了识别中使用的MLSS(most likely statesequence)准则。设计了识别网络并阐明了用于三音子识别的帧同步识别算法。将三音子DDBHMM识别方法与三音子齐次HMM识别方法和双音子DDBHMM识别方法进行了实验对比,结果表明:采用三音子DDBHMM可以使得识别错误率分别下降0.95%和2.29%。说明该方法能够显著地改进连续语音识别性能。展开更多
文摘针对目前连续语音识别中广泛使用的齐次HMM(hidden Markov model)模型识别精度低的现状,该文提出了三音子DDBHMM(duration distribution based HMM)识别方法。根据汉语的特点,设计了适用于连续语音识别的三音子。描述了识别中使用的MLSS(most likely statesequence)准则。设计了识别网络并阐明了用于三音子识别的帧同步识别算法。将三音子DDBHMM识别方法与三音子齐次HMM识别方法和双音子DDBHMM识别方法进行了实验对比,结果表明:采用三音子DDBHMM可以使得识别错误率分别下降0.95%和2.29%。说明该方法能够显著地改进连续语音识别性能。